Перейти до основного вмісту
Elliptic boundary value problems with singularities
Pukalskyi Ivan 1
1 Department of Differential Equations, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: linear elliptic differential equations, power weight
Abstract
Boundary problems for Ііnеаг elliptic differential equations with a power peculiarities іn the equation coefficients of an arbitrary order are considered. Existence and uniqueness of solution has been established for a classic functions space with power weight.
References

[1] Bitsadze A.B. Some classes of equations in partial derivatives. - M.: Nauka, 1981. - 448 p.

[2] Smirnov M.M. Growing elliptic and hyperbolic equations.  - M.: Nauka, 1966. - 292 p.

[3] Dziubarski Jacek. Note on $H^1$ spaces related to degenerate Schrödinger operators. J. Math. 2005. 49. № 4. - P. 1271-1297.

[4] Han Pigong.  Asymptotic  behavior  of solutionsto semilinear elliptic equations with Hardy potential.Proc. Amer. Math. Soc. 2007.  135, № 2. - P. 365-372.

[5] Plaksa, S.A. Dirichlet problem for an axisymmetric potential in a single-connected region of the meridian plane  // Ukr. mat. zhurn. - 2001. - Т. 53, № 12. - P.  1623-1640.

[6] Plaksa S.A. To the solution of the external Dirichlet problem for the axisymmetric potential // Ukr. mat. jurn. - 2002. - Т. 54, № 12. - P.  1634-1641.

[7] Moiseev E.I. About solvability of one nonlocal boundary value problem // Diff. Equations.  - 2001. - 37, № 11. - P.  1555-1567.

[8] Esteban Maria J. Nonexistence result for positive solutions of nonlinear elliptic degenerate problems // Nonlinear Anal. Theory Math. and Appl. - 1996, 26, № 4. - P. 835-843.

[9] Amano Kazuo. Maximum principle for degenerate elliptic-parabolic equations with Venttsel’s boundary conditions. - Trans. Amer. Math. Soc. - 1981. 263, № 2. - P. 377-396.

[10] Friedman A. Equations with partial derivatives of parabolic type. - M.: Mir, 1968. - 427 p.

[11] Ladyzhenskaya O.A., Uraltseva N.N. Linear and quasilinear equations of elliptic type. - M.: Nauka, 1973. - 576 p.

[12] Matiychuk M.I. Parabolic and elliptic boundary value problems with features. - Chernivtsi: Prut, 2003. - 248 p.

[13] Pukalsky I.D. Boundary value problems for non-uniformly parabolic and elliptic equations with degeneracies and features: Monograph. - Chernivtsi, 2008. - 253 p.

Cite
ACS Style
Pukalskyi, I. Elliptic boundary value problems with singularities. Bukovinian Mathematical Journal. 2018, 2
AMA Style
Pukalskyi I. Elliptic boundary value problems with singularities. Bukovinian Mathematical Journal. 2018; 2(1).
Chicago/Turabian Style
Ivan Pukalskyi. 2018. "Elliptic boundary value problems with singularities". Bukovinian Mathematical Journal. 2 no. 1.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings