[1] Martyniuk O.V. Cauchy problem for singular evolution equations in countably normalized spaces of infinitely differentiable functions. I. / O.V. Martyniuk // Mathematical and computer modeling. Series: physical and mathematical sciences: collection of scientific works. - Kamianets-Podilskyi: Kamianets-Podilskyi Ivan Ohienko National University, 2011. - Issue 5. - P. 179-192.
[2] Martyniuk O.V. Cauchy problem for singular evolution equations in countably normalized spaces of infinitely differentiable functions. II. / O.V. Martyniuk // Mathematical and computer modeling. Series: physical and mathematical sciences: collection of scientific works. - Kamianets-Podilskyi: Kamianets-Podilskyi Ivan Ohienko National University, 2011. - Issue 6.
[3] Levitan, B.I. Decomposition of Bessel functions into Fourier series and integrals / B.I. Levitan // Uspekhi mat. nauk. - 1951. - Т. 6, vol. 2. - P. 102 - 143.
[4] Zhitomirskiy, Ya.I. Cauchy problem for systems of linear equations in partial derivatives with a Bessel differential operator / Ya.I. Zhitomirskiy // Matem. sb. - 1955. - Т. 36, № 2. - P. 299-310.
[5] Gelfand, I.M. Spaces of basic and generalized functions / I.M. Gelfand, G.E. Shilov. - M.: Fizmatgiz, 1958. - 307 p.
[6] Gorodetsky V.V. Boundary properties of smooth in the layer solutions of parabolic type equations / Vasily V. Gorodetsky. - Chernivtsi: Ruta, 1998. - 225 p.
- ACS Style
- Martynyuk, O. Cauchy problem for singular evolution equations in countably normed spaces of infinitely differentiable functions. III. Bukovinian Mathematical Journal. 2018, 2
- AMA Style
- Martynyuk O. Cauchy problem for singular evolution equations in countably normed spaces of infinitely differentiable functions. III. Bukovinian Mathematical Journal. 2018; 2(1).
- Chicago/Turabian Style
- Olga Martynyuk. 2018. "Cauchy problem for singular evolution equations in countably normed spaces of infinitely differentiable functions. III". Bukovinian Mathematical Journal. 2 no. 1.