We obtain a соnditions for the existence of bounded on the $\mathbb{R}$ solutions of nonhnear dlfferential equation $x'' + F(x',x) = y(t), t ∈ \mathbb{R}.$
[1] A. A. Andronov, E. Leontovich. A. A., Gordon I. I. I., Mayer A. G. Qualitative theory of dynamical systems of the second order. - M: Nauka, 1966. - 568 p.
[2] Andronov A. A., Witt A. A., Khaykin S. E. Theory of Vibrations. - M.: Nauka, 1981. - 568 p.
[3] Bogolyubov N. N., Mitropolsky Y. A. Asymptotic methods in the theory of nonlinear oscillations. - M.: Nauka, 1974. - 504 p.
[4] Kontorovich M. I. Nonlinear Oscillations in Radio Engineering. - M.: Soviet Radio, 1973. - 320 p.
[5] Migulin V.V., Medvedev V. I., Mustel E. R., Parygin V. N. Fundamentals of Vibration Theory. - M.: Nauka, 1978. - 392 p.
[6] Reissig R., Sansone G., Conti R. Qualitative theory of nonlinear differential equations. - M.: Nauka, 1974. - 320 p.
[7] Slyusarchuk, V. E. Method of local linear approximation in the theory of nonlinear differential-functional equations // Matem. sb. - 2010. - 201, № 8. - P. 103-126.
[8] Daletsky Y. L., Krein M. G. Stability of solutions of differential equations in Banach space. - M.: Nauka, 1970. - 534 p.
[9] Fikhtenholtz G. M. Course of differential and integral calculus: In 3 vol. - M.: Nauka, 1966. - Т. 2. - 800 p.
[10] Naimark M. A. Normed rings. - M.: Nauka, 1968. - 664 p.
[11] Slyusarchuk V. Y. Method of local linear approximation in the theory of bounded solutions of nonlinear differential equations // Ukrainian Mathematical Journal - 2009. - 61 , № 11. - P. 1541-1556.
[12] Slyusarchuk V. Y. Conditions for the existence of bounded solutions of nonlinear differential equations // Scientific Bulletin of Chernivtsi Univ. - 2009. - Issue 454. Mathematics. - P. 88-94.
[13] Slyusarchuk V. Y. Method of local linear approximation in the theory of bounded solutions of nonlinear difference equations // Nonlinear Oscillations. - 2009. - 12 , № 3. - 109-115.
- ACS Style
- Slyusarchuk , V.Y. Boundedness conditions for solutions of the nonlinear differential equation $x'' + F(x',x) = y(t)$. Bukovinian Mathematical Journal. 2018, 2
- AMA Style
- Slyusarchuk VY. Boundedness conditions for solutions of the nonlinear differential equation $x'' + F(x',x) = y(t)$. Bukovinian Mathematical Journal. 2018; 2(1).
- Chicago/Turabian Style
- Vasyl Yukhimovych Slyusarchuk . 2018. "Boundedness conditions for solutions of the nonlinear differential equation $x'' + F(x',x) = y(t)$". Bukovinian Mathematical Journal. 2 no. 1.