Перейти до основного вмісту
Wiman-type inequality for functions analytic in the circle and the Baire category
Kuryliak Andriy Olegovich 1 , Skaskiv Oleg Bogdanovich 2
1 Department of mathematical economics, econometrics, financial and insurance mathematics, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
2 Department of theory of functions and functional analysis, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Keywords: Wiman-type inequality, the Baire category
Abstract

Let $f_t$ be analytic function in the unit disk of the form $f_t(z) = \sum a_ne^{iΘ_nt}z^n,$ where $t ∈ \mathbb{R}, Θ_n ∈ \mathbb{N},$ and $h$ be positive continuous increasing to $+∞$ on $(0,1)$ function such that $\int_{r_0}^1 h(r)dr = +∞, r_0 ∈ (0,1).$ If sequence $(Θ_n)_{n≥0}$ satisfies condition $Θ_{n+1}$/$Θ_n ≥ q > 1 (n ≥ 0),$ then for any analytic function $f_t$ there exists the set $E = E(δ,t) ⊂ (0,1)$ such that $\int_E h(r)dr < +∞$ and 

$\overline{\lim\limits_{r \to 1-0, \; {r \notin E}}} = {ln M_f(r) - ln μ_f(r) \over 2ln  h(r) + lnln\{h(r)μ_f(r)\}} ≤ {1\over 4} .$

References

[1] Kövari Т.On the maximum modulus and maxi­mum term of functions analytic in the unit disc // J. London Math. Soc. - 1966. - V.41. - P.129-137.

[2] Skaskiv O.B., Kurilyak A.O. Direct analogs of Wiman's inequality for functions analytic in a unit circle // Carpathian Mathematical Publications. - 2010. - VOL. 2, ZH. - P. 109-118.

[3] Suleymanov N.V. Wiman-Va-Lyron type estimates for power series with finite radius of convergence and their accuracy // DAN USSR. - 1980. - Т.253, №4. - P.822-824.

[4] Filevich P.V. Wiman-Valiron type estimates for random analytic functions in a circle // Integral transformations and their application to boundary value problems. Kyiv: Inst. of Mathematics. - 1997. - Issue 15. - P. 227-238.

[5] Steele J.M. Sharper Wiman inequality for entire functions with rapidly oscillating coefficients // J. Math. Anal. Appl. - 1987. - V.123. - P.550-558.

[6] Filevich P.V. Some classes of integer functions in which it is almost certain to improve the Wiman-Valiron inequality  // Mat. Stud. - 1996. - VOL. 6, P. 9-66.

[7] Skaskov O.B., Zrum O.V. On the exceptional set in the Wiman-type inequality for integer functions // Mat. Stud. - 2004. - VOL. 21, № 1, P. 13-24.

[8] Zrum O.V., Skaekov O.B. On Wiman's inequality for random functions of two variables // Mat. Stud. - 2005. - Т.23, № 2. - P .149-160.

[9] Skayekov O.B., Zrum O.V. Wiman's inequality for integer functions of two complex variables with rapidly oscillating coefficients (in Russian) // Mat. methods and physico-mech. fields. - 2005. - VOL. 48, № 4, P. 78-87.

[10] Skaskov O.B., Zrum O.V. Refinement of Fenton's inequality for integer functions of two complex variables // Mathematical Bulletin of the National Technical School. - 2006. - P. 56-68.

Cite
ACS Style
Kuryliak, A.O.; Skaskiv, O.B. Wiman-type inequality for functions analytic in the circle and the Baire category. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Kuryliak AO, Skaskiv OB. Wiman-type inequality for functions analytic in the circle and the Baire category. Bukovinian Mathematical Journal. 2018; 1(4).
Chicago/Turabian Style
Andriy Olegovich Kuryliak, Oleg Bogdanovich Skaskiv. 2018. "Wiman-type inequality for functions analytic in the circle and the Baire category". Bukovinian Mathematical Journal. 1 no. 4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings