Let $f_t$ be analytic function in the unit disk of the form $f_t(z) = \sum a_ne^{iΘ_nt}z^n,$ where $t ∈ \mathbb{R}, Θ_n ∈ \mathbb{N},$ and $h$ be positive continuous increasing to $+∞$ on $(0,1)$ function such that $\int_{r_0}^1 h(r)dr = +∞, r_0 ∈ (0,1).$ If sequence $(Θ_n)_{n≥0}$ satisfies condition $Θ_{n+1}$/$Θ_n ≥ q > 1 (n ≥ 0),$ then for any analytic function $f_t$ there exists the set $E = E(δ,t) ⊂ (0,1)$ such that $\int_E h(r)dr < +∞$ and
$\overline{\lim\limits_{r \to 1-0, \; {r \notin E}}} = {ln M_f(r) - ln μ_f(r) \over 2ln h(r) + lnln\{h(r)μ_f(r)\}} ≤ {1\over 4} .$
[1] Kövari Т.On the maximum modulus and maximum term of functions analytic in the unit disc // J. London Math. Soc. - 1966. - V.41. - P.129-137.
[2] Skaskiv O.B., Kurilyak A.O. Direct analogs of Wiman's inequality for functions analytic in a unit circle // Carpathian Mathematical Publications. - 2010. - VOL. 2, ZH. - P. 109-118.
[3] Suleymanov N.V. Wiman-Va-Lyron type estimates for power series with finite radius of convergence and their accuracy // DAN USSR. - 1980. - Т.253, №4. - P.822-824.
[4] Filevich P.V. Wiman-Valiron type estimates for random analytic functions in a circle // Integral transformations and their application to boundary value problems. Kyiv: Inst. of Mathematics. - 1997. - Issue 15. - P. 227-238.
[5] Steele J.M. Sharper Wiman inequality for entire functions with rapidly oscillating coefficients // J. Math. Anal. Appl. - 1987. - V.123. - P.550-558.
[6] Filevich P.V. Some classes of integer functions in which it is almost certain to improve the Wiman-Valiron inequality // Mat. Stud. - 1996. - VOL. 6, P. 9-66.
[7] Skaskov O.B., Zrum O.V. On the exceptional set in the Wiman-type inequality for integer functions // Mat. Stud. - 2004. - VOL. 21, № 1, P. 13-24.
[8] Zrum O.V., Skaekov O.B. On Wiman's inequality for random functions of two variables // Mat. Stud. - 2005. - Т.23, № 2. - P .149-160.
[9] Skayekov O.B., Zrum O.V. Wiman's inequality for integer functions of two complex variables with rapidly oscillating coefficients (in Russian) // Mat. methods and physico-mech. fields. - 2005. - VOL. 48, № 4, P. 78-87.
[10] Skaskov O.B., Zrum O.V. Refinement of Fenton's inequality for integer functions of two complex variables // Mathematical Bulletin of the National Technical School. - 2006. - P. 56-68.
- ACS Style
- Kuryliak, A.O.; Skaskiv, O.B. Wiman-type inequality for functions analytic in the circle and the Baire category. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Kuryliak AO, Skaskiv OB. Wiman-type inequality for functions analytic in the circle and the Baire category. Bukovinian Mathematical Journal. 2018; 1(4).
- Chicago/Turabian Style
- Andriy Olegovich Kuryliak, Oleg Bogdanovich Skaskiv. 2018. "Wiman-type inequality for functions analytic in the circle and the Baire category". Bukovinian Mathematical Journal. 1 no. 4.