The paper contains a description of general properties of $\mathcal{PT}$-symmetric operators and the detailed investigation of the important model case when $\mathcal{PT}$-symmetric operators are presented as matrices of the second order.
[1] Bender C.М. Making sense of non-Hermitian Hamiltonians / / Rep. Progr. Phys. - 2007. 70, N6. - C.947—1018.
[2] Azizov T.Ya., Iokhvidov I.S. Fundamentals of the theory of linear operators in spaces with indefinite metrics // M.: Nauka - 1986. - P. 352.
[3] Akhiezer N.I., Glazman I.M. Theory of linear operators in Hilbert space // M.:Nauka - 1966. - P. 544
[4] Bender C. М ., Tan Barnabas Calculation o f the hidden symmetry operator for a $PT$-symmetric square well // J. Phys. A - 2006. - 39, N8. - 1945-1953.
[5] Jones H. F., M ateo J. Equivalent Hermitian Hamiltonian for the non-Hermitian $-x^4$ potential // Physical Review D - 2006. - 73 - 085002.
[6] Godich V.I., Lutsenko I.E. On the representation of a unitary operator as a product of two involutions / / Uspekhi mat. nauk.- 1965., N6 - P .64-66.
[7] Günther U., Kuzhel S. $\mathcal{PT}$-symmetry, Cartan decompositions, Lie triple systems and Krein space related Clifford algebras / / Journal of Physics A: Mathematical and Theoretical. - 2010. - V. 43., N 39. - P.392002-392011.
[8] Günther U., Rotter I., Samsonov B. Projective Hilbert space structures at exceptional points / / J. Phys. A. - 2007 - 40, P.8815-8833.
[9] Mostafazadeh A . Pseudo-Hermitian Representation of Quantum Mechanics / / Int. J. Geom. Meth. Mod. Phys. - 2010 - 7, P.1191-1306..
[10] Mostafazadeh A . Pseudo-Hermiticity and Generalized P T - and CPT-Symmetries / / J.Math.Phys. - 2003 - 44, P.974-989.
- ACS Style
- Grod , I.M. To the theory of $\mathcal{PT}$ -symmetric operators. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Grod IM. To the theory of $\mathcal{PT}$ -symmetric operators. Bukovinian Mathematical Journal. 2018; 1(4).
- Chicago/Turabian Style
- Ivan Mykolayovych Grod . 2018. "To the theory of $\mathcal{PT}$ -symmetric operators". Bukovinian Mathematical Journal. 1 no. 4.