Перейти до основного вмісту
Nonlocal boundary value problem with free boundaries for a quasilinear hyperbolic system
Andrusiak Ruslan Vasyliovych 1 , Kyrylych Volodymyr Mykhailovych 2
1 Department of Mathematical Statistics and Differential Equations, Ivan Franko National University of Lviv, Lviv, 79007, Ukraine
2 Department of mathematical economics, econometrics, financial and insurance mathematics, Ivan Franko National University of Lviv, Lviv, 79000, Ukraine
Keywords: nonlocal boundary value problem, a quasilinear hyperbolic system, conditions for existence and uniqueness
Abstract
The conditions for existence and uniqueness of the local in time generalized solution of nonlocal boundary value problem for quasilinear hyperbolic system in curvilinear sector with free boundary were obtained.
References

[1] Lee Da-tsin. Some existence theorems for quasi­linear hyperbolic systems of partial differential equations in two independent variables. II. Typi­cal boundary value problems o f functional form and typical free boundary problems / Lee Datsin, Wen-tsu Y. // Scientia Sinica. - 1964. - V. 13, №5. - P. 551-562.

[2] Volmir A .  S. Shells in fluid and gas flow: problems of aeroelasticity / Volmir A . С. - M.: Nauka, 1976. - 347 p.

[3] Khubiev R. N. Boundary value problem with free boundary for one-dimensional wave equation / Khubiev R. N. - Differential equations.  N. - Differential Equations. - 1988.

[4] Rozhdestvensky B. L. Systems of quasilinear equations and their applications to gas dynamics / Rozhdestvensky B. L., Yanenko N. I. - M.: Nauka, 1978. - 592 p.

[5] Bitsadze A . Some classes of partial derivative equations / Bitsadze A . В. - M.: Nauka, GRFML , 1981.  - 448 p.

[6] Cherny G. G. Gas dynamics / Cherny G. G. - M.: Nauka, 1988. - 424 p.

[7] Equations in partial derivatives and free boundary problems: Collection of scientific works, ed. by I. V. Skrypnik. V. Skrypnik. - K.: Nauk, Dumka, 1983. - 134 p.

[8] Danilyuk I.I. Stefan's problem / Danilyuk I.I. // Uspekhi mat. nauk. - 1985. - Т.4, № 5. - P. 133-185.

[9] Gupta S. С. The classical Stefan problem: basic concepts, modeling and analysis / Gupta S. C. - Amsterdam: Elsevier, 2003. - 385 p.

[10] Breezel J. Non-Fourier effects in the transmissi­on of heat / Breezel J., Nolan E. // Proc. Sixth Conf. on Thermal Conductivity: Book o f abstr. -  Dayton, 1966. - P. 237-254.

[11]  De Socio L. A hyperbolic Stefan problem / De Socio L., Gualtieri G. // Quart Appl. Math. - 1983. - V. 41, № 2. - P. 253-259.

[12] Kazakov, K.Yu. On the solvability of the one-dimensional problem of aeroelasticity / Kazakov, K.Yu.; Morozov, S.F. // Izv. of Vuzov. Mathematics. - 1984. - № 8. - P .66-69.

[13] Solomon A.D. On the formulation o f hyperbolic Stefan problems / Solomon A.D., Alexiades V., Wilson D. G., Drake Y. // Quart. Appl. Math. - 1985. - V. 43, № 3. - P. 295-304.

[14] Showalter R.E. A hyperbolic Stefan problem / Showalter R. E., Walkington N. J. // Quart Appl. Math. - 1987. - V. 45, № 4. - P. 768-788.

[15] Friedman A . The Stefan problem for a hyperbolic heat equation / Friedman A ., Hu B. // Math. Anal, and Appl. - 1989. - V. 138, № 1. - P. 249­- 279.

[16] Letavin, M.I. On the correctness of the formulation of the one-dimensional one-phase hyperbolic Stefan problem / Letavin, M.I. // Differential Equations. - 1991. - Т.  27, № 8. - P.  1395-1402.

[17] Dzhuraev T.D. Hyperbolic problem of Stefan / Dzhuraev T. D., Tahirov Zh .O. // Differential Equations. - 1994. - Т.  30, № 5.- P. 821-831.

[18] Shemetov N. V. Existence and stability results for the hyperbolic Stefan problem with relaxation / Shemetov N. V. // Ann. Mat. pura applic. - 1995. - V. CLX V III, № IV. - P. 301-316.

[19] Nastaj J. A hyperbolic Stefan problem in vacuum freeze drying of disordered porous media / Nastaj J. // Bull. Pol. Acad. Sci. Tech. Sci. - 2000. - V. 48, № 3. - P.357-368.

[20] Kirilich, V.M. Generalized continuous solvability of the problem with unknown boundaries for singular hyperbolic systems of quasilinear equations / Kirilich, V.M., Filimonov, A.M. // Matem. Studii. - 2008. - Т. 30, №1 - P.42-60.

[21] Kirilich V. M. Nonlocal Stefan-type problem for a hyperbolic system of the first order / Kirilich V. M. // Ukrainian Mathematical Journal - 1988. - Т. 40, №1. - P. 121-124.

[22] Beregowa G. Hiperboliezne zagadnienie Stefana о nielokalnyeh warunkach na prostej / Beregowa G., K yrylycz W., Flud W. // Zeszyty Naukowe Politechniki Opolskiej. Matematyka. - 1997. - № 230., z. 14. - C. 31-42.

[23] Andrusyak R. V. Global solvability o f hyperbolic Stefan problem / Andrusyak R. V., Kyrylych V. M. // Matematyehni Studii.- 2005. - V. 23, №2. - P. 191-206.

[24] Andrusiak P. V. Problem for a quasilinear system of hyperbolic type in a curved sector with free boundaries / Andrusiak P. V., Kirilich V. M. // Nauk, vestnik Chernivtsi Univ. Mathematics. - 2008. - Issue 421. - P.5-12.

[25] Andrusiak R. V. Classical solvability of a problem with moving boundaries for a hyperbolic system of quasilinear equations / Andrusiak R. V., Burdeina N. O., Kyrylych V. M. // Ukrainian Mathematical Journal - 2009. - Т. 61, №7. - P.867-891.

Cite
ACS Style
Andrusiak, R.V.; Kyrylych, V.M. Nonlocal boundary value problem with free boundaries for a quasilinear hyperbolic system. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Andrusiak RV, Kyrylych VM. Nonlocal boundary value problem with free boundaries for a quasilinear hyperbolic system. Bukovinian Mathematical Journal. 2018; 1(4).
Chicago/Turabian Style
Ruslan Vasyliovych Andrusiak, Volodymyr Mykhailovych Kyrylych. 2018. "Nonlocal boundary value problem with free boundaries for a quasilinear hyperbolic system". Bukovinian Mathematical Journal. 1 no. 4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings