Перейти до основного вмісту
Hybrid integral transformation of Euler-(Kontorovich-Lebedev)-Legendre type on the polar axis $r ≥ R_0 > 0$
Lenyuk Mykhailo Pavlovych 1 , Lenyuk Oleg Mykhailovych 1
1 Department of Differential Equations, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: hybrid integral transformation of Euler-(Kontorovich-Lebedev)-Legendre type
Abstract
The method of delta-like sequence in the polar axis with the two conjugate points we introduce the integral transformation generated by hybrid differential operator of Euler-(Kontorovieh-Lebedev)-Legendre. The basic identity. The logic circuit is shown in the application of heat conduction problem.
References

1] Uflyand Ya.  S. About some new integral transformations and their applications to problems of mathematical physics // In surveys of mathematical physics.  - L.: 1976.  - P. 93-106.

[2] Efimova I. T. Some integral transformations on a composite interval and their application to the solution of boundary value problems for layered media: Cand. of Phys.-Math. sciences.  - L., 1972.  - 150 p.

[3] Belova H.A., Uflyand Ya .  On the eigenfunction decomposition of one singular boundary value problem for the Lejandre equation // Diph.equ. - 1967. - Т. III. - Vyp.  8. - P. 1397-1399.

[4] Protsenko B.C., Golovchenko A.B.B.Generalized integral transformation of Fourier-Lejandre type // Mat. methods of analysis of dynamical systems.  - Kharkov, 1982. - № 6. - P. 26-28.

[5] Naida L. S. Hybrid Hankel-Lejandre integral transformations // Mat. methods of analysis of dynamical systems. - Kharkov, 1984.  - IV , - P. 132-135.

[6] Protsenko B.C., Solov'ev A.C. Some hybrid integral transformations and their application in the theory of elasticity of inhomogeneous media // Prikl. mehanika.  - 1982.  - Т. XIII.  - P.  62-67.

[7] Lenyuk M.P., Shynkaryk M.L. Hybrid integral transforms (Fourier, Bessel, Legendre) Part 1 - Ternopil: Ekonom, dumka, 2004. - 368 p.

[8] Stepanov V.V. Course of differential equations.  - M.:Fizmatgiz, 1959.  - 468 P.

[9] Lenyuk M.P., Mikhalevskaya G.I. Integral transformations of the Kontorovich-Lebedev type. - Chernivtsi: Prut, 2002. - 280 p.

[10] Konet I.M., Lenyuk M.P. Integral transforms of the Mehler-Fock type. - Chernivtsi: Prut, 2002. - 248 p.

[11] Kurosh A.G. Course of higher algebra.  - M.: Nauka, 1971.  - 432 p.

[12] Lenyuk M.P., Lenyuk O.M. Hybrid Legendre-Fourier-Euler integral transform on the polar axis // Scientific Bulletin of Chernivtsi University: 36. nauk. pr. Vyp.528. Mathematics. - Chernivtsi: Chernivtsi National University, 2010. - P. 80-87.

[13] Tikhonov A.H., Samarsky A.A. Equations of mathematical physics.  - M.: Nauka, 1972. - 735 p.

Cite
ACS Style
Lenyuk, M.P.; Lenyuk, O.M. Hybrid integral transformation of Euler-(Kontorovich-Lebedev)-Legendre type on the polar axis $r ≥ R_0 > 0$. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Lenyuk MP, Lenyuk OM. Hybrid integral transformation of Euler-(Kontorovich-Lebedev)-Legendre type on the polar axis $r ≥ R_0 > 0$. Bukovinian Mathematical Journal. 2018; 1(4).
Chicago/Turabian Style
Mykhailo Pavlovych Lenyuk, Oleg Mykhailovych Lenyuk. 2018. "Hybrid integral transformation of Euler-(Kontorovich-Lebedev)-Legendre type on the polar axis $r ≥ R_0 > 0$". Bukovinian Mathematical Journal. 1 no. 4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings