Generalized Rubel equation
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords:
Rubel equation
Abstract
All pairs linear functionals which satisfy generalized Rubel equation are described.
References
[1] L. A. Rubel Derivation pairs on the holomorphie functions / / Funkcial. Ekvac. - 1967. - №10. - P. 225-227.
[2] N. R. Nandakumar A Note on Derivation Pairs // Proc. Amer. Math. Soc. - 1969. - №21. - P. 535-539.
[3] N. R. Nandakumar A note on the functional equation $M(fg) = M(f)M(g) + L(f)L(g)$ on $H(G)$ // Rend. Sem. Fac. Sci. Univ. Cagliari. - 1998. - 68. - P. 13-17.
[4] Pl. Kannappan, N. R. Nandakumar On a cosine functional equation for operators on the algebra of analytic functions in a domain / / Aequationes Mathematicae - 2001.- 61 . - №3. - P. 233-238.
[5] John B. Garnett Bounded analytic functions. - Academic Press, New York, 1981. - 468 p.
Cite
- ACS Style
- Linchuk , Y.S. Generalized Rubel equation. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Linchuk YS. Generalized Rubel equation. Bukovinian Mathematical Journal. 2018; 1(4).
- Chicago/Turabian Style
- Yurii Stepanovych Linchuk . 2018. "Generalized Rubel equation". Bukovinian Mathematical Journal. 1 no. 4.
Export