Перейти до основного вмісту
Generalized Rubel equation
Linchuk Yurii Stepanovych 1
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: Rubel equation
Abstract

All pairs linear functionals which satisfy generalized Rubel equation are described.

References

[1] L. A. Rubel Derivation pairs on the holomorphie functions / / Funkcial. Ekvac. - 1967. - №10. - P. 225­-227.

[2] N. R. Nandakumar A Note on Derivation Pairs // Proc. Amer. Math. Soc. - 1969. - №21. - P. 535-539.

[3] N. R. Nandakumar A note on the functional equation $M(fg) = M(f)M(g) + L(f)L(g)$ on $H(G)$ // Rend. Sem. Fac. Sci. Univ. Cagliari. - 1998. - 68. - P. 13-17.

[4] Pl. Kannappan, N. R. Nandakumar On a cosi­ne functional equation for operators on the algebra of analytic functions in a domain / / Aequationes Mathematicae - 2001.- 61 . - №3. - P. 233-238.

[5] John B. Garnett Bounded analytic functions. - Academic Press, New York, 1981. - 468 p.

Cite
ACS Style
Linchuk , Y.S. Generalized Rubel equation. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Linchuk YS. Generalized Rubel equation. Bukovinian Mathematical Journal. 2018; 1(4).
Chicago/Turabian Style
Yurii Stepanovych Linchuk . 2018. "Generalized Rubel equation". Bukovinian Mathematical Journal. 1 no. 4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings