The paper is devoted to investigation of the mixed problem for a nonhnear evolution system of equations with integral term. The conditions of the existence of local generalized solution have been obtained.
1. Arosio A. Global solution of the Cauchy problem for a nonlinear hyperbolic / Arosio A., Spagnolo S. // Nonlinear Partial Differential Equation and their Applications, College de France Seminar. - 1984. - V.6. (ed. by H. Brezis and J. L. Lions), Pitman, London.
2. Bisignin E. Perturbation of Kirchhoff-Carrier’s operator by Lipschitz functions / Bisignin E. // Proceedings of XXXI Bras. Sem. of Analysis. - Rio de Janeiro, 1992.
3. Clark, M. R. & Bitta, O. A. Existence of solutions for a variational unilateral system, Electronic Journal of Differential Equations, vol. 2002(2002), no. 22, pp. 1-18.
4. D'Ancona P. Nonlinear perturbation of the Kirchhoff-Carrier equations / D'Ancona P., Spagnolo S. - Univ. Pisa Lecture Notes, 1992.
5. Hosoya M. On some nonlinear wave equation I - local existence and regularity of solutions / Hosoya M., Yamada Y. // Journal Fac. Sa.Tokyo, Sec. IA, Math. - 1991. - V.38. - P.225-238.
6. Lione J. L.Some methods of solving non-linear boundary value problems / Lione Zh. L. - M., 1972.
7. Matos M. P. Mathematical analysis of the nonlinear model for the vibrations of a string / Matos M. P. // Nonlinear Analysis, Theory, Methods & Applications. - 1991. - V.17, No. 12. - P.1125-1137.
8. Meddros L. A. Local solutions for a nonlinear degenerate hyperbolic equation / Medeiros L. A., Milla Miranda M. // Nonlinear Analysis. - 1986. - V.10. - P.27-40.
9. Mederns L. A. On some nonlinear perturbations of Kirchhoff-Carrier's operator / Medeiros L. A. // Camp. Appl. Math. - 1994. - V.13, No.3. - P.225-233.
10. Pohozhaev S. I. On a class of quasilinear hyperbolic equations / Pohozhaev S. I. // Mat.Sbornic. - 1975. - V.96, No. 138(1). - P.152 - 166.
11. H. Gaevskyi.Nonlinear operator differential equations / H. Gaevskyi, K. Greger, K. Zacharias. - M., 1978. - 336 c.
12. Coddington E. AND.Theory of ordinary boundary value problems / E. Coddington. A., Levinson N.- M., 1958. - 474 c.
13. Demidovych B. P.Lectures on the mathematical theory of stability / Demidovych B. P. - M., 1967. - 472 c.
14. Dzhuraev T. D. Boundary-value problems for equations of parabolic-hyperbolic type / Dzhuraev T. D., Sopuev A., Mamazhanov M. - Tashkent, Fon, 1986. - 220 p.
- ACS Style
- Nechepurenko , M.; Torgan , G.R. Existence of a local generalized solution of a mixed problem for a nonlinear system of equations with an integral term. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Nechepurenko M, Torgan GR. Existence of a local generalized solution of a mixed problem for a nonlinear system of equations with an integral term. Bukovinian Mathematical Journal. 2018; 1(4).
- Chicago/Turabian Style
- M. Nechepurenko , Galyna Romanivna Torgan . 2018. "Existence of a local generalized solution of a mixed problem for a nonlinear system of equations with an integral term". Bukovinian Mathematical Journal. 1 no. 4.