Перейти до основного вмісту
Existence of a local generalized solution of a mixed problem for a nonlinear system of equations with an integral term
Nechepurenko M. 1 , Torgan Galyna Romanivna 1
1 Ivan Franko National University of Lviv, Ivan Franko National University of Lviv, 79000, Ukraine
Keywords: nonlinear system of equations
Abstract

The paper is devoted to investigation of the mixed problem for a nonhnear evolution system of equations with integral term. The conditions of the existence of local generalized solution have been obtained.

References

1. Arosio A. Global solution of the Cauchy problem for a nonlinear hyperbolic / Arosio A., Spagnolo S. // Nonlinear Partial Differential Equation and their Applications, College de France Seminar. - 1984. - V.6. (ed. by H. Brezis and J. L. Lions), Pitman, London.
2. Bisignin E. Perturbation of Kirchhoff-Carrier’s operator by Lipschitz functions / Bisignin E. // Proceedings of XXXI Bras. Sem. of Analysis. - Rio de Janeiro, 1992.
3. Clark, M. R. & Bitta, O. A. Existence of solutions for a variational unilateral system, Electronic Journal of Differential Equations, vol. 2002(2002), no. 22, pp. 1-18.
4. D'Ancona P. Nonlinear perturbation of the Kirchhoff-Carrier equations / D'Ancona P., Spagnolo S. - Univ. Pisa Lecture Notes, 1992.
5. Hosoya M. On some nonlinear wave equation I - local existence and regularity of solutions / Hosoya M., Yamada Y. // Journal Fac. Sa.Tokyo, Sec. IA, Math. - 1991. - V.38. - P.225-238.
6. Lione J. L.Some methods of solving non-linear boundary value problems / Lione Zh. L. - M., 1972.
7. Matos M. P. Mathematical analysis of the nonlinear model for the vibrations of a string / Matos M. P. // Nonlinear Analysis, Theory, Methods & Applications. - 1991. - V.17, No. 12. - P.1125-1137.
8. Meddros L. A. Local solutions for a nonlinear degenerate hyperbolic equation / Medeiros L. A., Milla Miranda M. // Nonlinear Analysis. - 1986. - V.10. - P.27-40.
9. Mederns L. A. On some nonlinear perturbations of Kirchhoff-Carrier's operator / Medeiros L. A. // Camp. Appl. Math. - 1994. - V.13, No.3. - P.225-233.
10. Pohozhaev S. I. On a class of quasilinear hyperbolic equations / Pohozhaev S. I. // Mat.Sbornic. - 1975. - V.96, No. 138(1). - P.152 - 166.
11. H. Gaevskyi.Nonlinear operator differential equations / H. Gaevskyi, K. Greger, K. Zacharias. - M., 1978. - 336 c.
12. Coddington E. AND.Theory of ordinary boundary value problems / E. Coddington. A., Levinson N.- M., 1958. - 474 c.
13. Demidovych B. P.Lectures on the mathematical theory of stability / Demidovych B. P. - M., 1967. - 472 c.
14. Dzhuraev T. D. Boundary-value problems for equations of parabolic-hyperbolic type / Dzhuraev T. D., Sopuev A., Mamazhanov M. - Tashkent, Fon, 1986. - 220 p.

Cite
ACS Style
Nechepurenko , M.; Torgan , G.R. Existence of a local generalized solution of a mixed problem for a nonlinear system of equations with an integral term. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Nechepurenko M, Torgan GR. Existence of a local generalized solution of a mixed problem for a nonlinear system of equations with an integral term. Bukovinian Mathematical Journal. 2018; 1(4).
Chicago/Turabian Style
M. Nechepurenko , Galyna Romanivna Torgan . 2018. "Existence of a local generalized solution of a mixed problem for a nonlinear system of equations with an integral term". Bukovinian Mathematical Journal. 1 no. 4.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings