Let X , Y be topologRa! spaces, B be a countable type subset of Y and Z be a separable metrizable space. We obtarn that for any set-valued /compact-valued/ multifunction ___ whmh !s upper /lower/ horizontally quasi-continuous and lower /upper/ continuous whh respect to the second variable there ex!sts a res!dual subset at every pornt of A x B.
1. Kempisty S. Sur les fuctions quasicontinues // Fund. Math. - 1932. - 19. - P. 184 - 197.
2. Neubrunn T. Quasi-continuity // Real Anal. Exch. - 1988. -1989. -14, No. 3. - P. 259 - 306.
3. Fotii O.G. Connections between different types of continuity of multivalued mappings: Dissertation...candidate of physical and mathematical sciences: 01.01.01.- Chernivtsi, 2008. - 122p.
4. Maslyuchenko V.K., Nesterenko V.V. Cumulative continuity and quasi-continuity of horizontally quasi-continuous functions // Ukr. mat. zhurn. - 2000. - 52, No. 12. - P. 1711 - 1714.
- ACS Style
- Nesterenko, V.V.; Fotiy, O.G. Cumulative continuity of horizontally quasicontinuous multifunctions. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Nesterenko VV, Fotiy OG. Cumulative continuity of horizontally quasicontinuous multifunctions. Bukovinian Mathematical Journal. 2018; 1(4).
- Chicago/Turabian Style
- Vasyl Volodymyrovych Nesterenko, Olena Georgiivna Fotiy. 2018. "Cumulative continuity of horizontally quasicontinuous multifunctions". Bukovinian Mathematical Journal. 1 no. 4.