There is investigated a question about existence and uniqueness of solutions of the problems without initial conditions for abstract semilinear evolution equations with operators, that are infinitesimal generators of strongly continuous semigroups on Banach spaces.
[1] Balabushenko T.M., Ivasyshen S.D. Properties of solutions of -$\vec 2b$ -parabolic systems in unbounded domains by the time variable // Mathematical methods and physical and mechanical fields - 2002 - 45, № 4 - P. 19-26.
[2] Bokalo M.M., Pauchok I.B. On the correctness of the Fourier problem for nonlinear parabolic equations of higher orders with variable nonlinearity exponents // Mat. Studii. – 2006. – 24, № 1. – p. 25–48.
[3] Ivasishen S.D. About parabolic boundary value problems without initial conditions // Ukr. mat. jurn. -1982. -34, № 5. - P. 547-552.
[4] Oleinik O.A., Iosifyan G.A. Analog of Saint-Venant's principle and singularity of solutions of boundary value problems in unbounded regions for parabolic equations // Uspekhi mat. nauk. - 1976. - 31,№ 6. - P.142-166.
[5] Kalashnikov A.S. The problem without initial conditions in the classes of growing functions for some linear degenerate parabolic systems of the second order. I, II // Vestnik Moskovskogo un-ta.Ser. mat. - 1971. - № 2, 3. - P. 42-48, 3-8.
[6] Lavrenchuk V.P., Matiychuk M.I. Global solvability of the boundary value problem for a quasilinear parabolic system and the problem without initial conditions // Ukr. mat. zhurn. - 1982. -34, № 6. - P. 710-717.
[7] Pankov A.A. Restricted and almost periodic solutions of nonlinear differential operator equations // Kiev: Nauk. dumka, 1985. - 184 p.
[8] Tikhonov A.N. Singularity theorems for the heat conduction equation // Mat. sb. - 1935. -42, № 2. - P.199-216.
[9] Eidelman S.D. About some properties of solutions of parabolic equations // Ukr. mat. jurn. -1956. -8, № 2. - P. 191-207.
[10] Showalter R. E. Singular nonlinear evolution equations // Rocky Moutain J. Math. – 1980. – 10 , № 3. – P. 499–507.
[11] Showalter R. E. Monotone operators in Banach space and nonlinear partial differential equations. // Amer. Math. Soc.– 1997. – 49. – 278 p.
[12] Bokalo M., Lorenzi A. Linear evolution first-order problems without initial conditions // Milan J. Math. – 2009. – 77 . – P. 437–494.
[13] Pazy A. Semigroups of Linear Operator and Applications to Partial Differential Equations // Series Applied Mathematical Sciences. – Springer, 1983. – 44 .– 279 p.
[14] Trenogin V.A. Functional Analysis. - Moscow: Fizmatgiz, 2002. - 448 p.
- ACS Style
- Bokalo, M.M. Problems without initial conditions for semilinear evolutionary equations in Banach spaces. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Bokalo MM. Problems without initial conditions for semilinear evolutionary equations in Banach spaces. Bukovinian Mathematical Journal. 2018; 1(1-2).
- Chicago/Turabian Style
- Mykola Mykhailovych Bokalo. 2018. "Problems without initial conditions for semilinear evolutionary equations in Banach spaces". Bukovinian Mathematical Journal. 1 no. 1-2.