[1] Eidelman S.D. Estimates of solutions of parabolic systems and some of their applications // Mat. sb.- 1953. -33, № 2. - P. 359 - 382.
[2] Eidelman S.D. On the relation between the fundamental matrices of solutions of parabolic and elliptic systems // Mat. sb. - 1954. -35, № 1.- P. 57 - 72.
[3] Eidelman S.D. About some properties of solutions of parabolic systems // Ukr. mat. jurn. -1956. -8, № 2. - P. 191 - 207.
[4] Eidelman S.D. Liouville theorems and stability theorems for solutions of parabolic systems // Mat. sb. - 1958. - 44, № 4. - З. 481 - 508.
[5] Eidelman S.D. On fundamental solutions of parabolic systems. II // Mat. sb. - 1961. - 53, № 1. - P. 73 - 136.
[6] Eidelman S.D. Parabolic systems. -Moscow: Nauka, 1964. - 443 p.
[7] Ivasyshyn L.M. Investigation of qualitative properties of solutions of high-order parabolic systems in terms of time changes in the semi-space $R^{n+1}_+$ // Doklady. NAS of Ukraine, 1998, - № 1, - P. 17 - 23.
[8] Balabushenko T.M. Estimates of the fundamental matrix of solutions of the Cauchy problem for - $\vec 2b$ -parabolic systems in unbounded domains with respect to the time variable and their application // Bulletin of the National University ‘Lviv Polytechnic’. № 411. Applied mathematics. - 2000. - P. 6 - 11.
[9] Balabushenko T.M. On estimates in unbounded with respect to the time variable domains of the fundamental matrix of solutions of the Cauchy problem for -$\vec 2b$ - parabolic systems // Mathematical studies. - 2002. - 17, № 2. - P. 163 - 174.
[10] Balabushenko T.M. Properties of solutions of -$\vec 2b$ - parabolic systems in domains unbounded with respect to the time variable // Mat. studii. - 2002. - 18, № 1. - P. 69 - 78.
[11] Balabushenko T.M., Ivasyshen S.D. On the properties of solutions of -$\vec 2b$ - parabolic systems in the unbounded areas with respect to the time variable // Mathematical methods and physical and mechanical fields. 2002 - 45, № 4 - P. 19 - 26.
[12] Balabushenko T.M. Construction and estimation of fundamental matrices of solutions of the polynomial bundle of -$\vec 2b$ -elliptic systems generated by -$\vec 2b$ - parabolic system // Scientific Bulletin of Chernivtsi University: Collection of scientific papers. Mathematics - Chernivtsi: Ruta, 2003. - P. 5 - 10.
[13] Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type // Operator Theory: Adv. and Appl. – 2004. – 152 . – 390 p.
[14] Sonin I.M. About one class of degenerate diffusion processes // Theory of probability and its applications. - 1967. -12, № 3. - P. 540 - 547.
[15] Vladimirov V.S. Equations of mathematical physics. - Moscow: Nauka, - 1988. - 512 p.
[16] Gantmacher F. Theory of matrices. - Moscow: Nauka, - 1988. - 552 p.
- ACS Style
- Ivasyshen, S.D.; Ivasyuk, H.P.; Fratavchan, T.M. On the properties of solutions of some ultraparabolic equations of the Kolmogorov type on unbounded time intervals. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Ivasyshen SD, Ivasyuk HP, Fratavchan TM. On the properties of solutions of some ultraparabolic equations of the Kolmogorov type on unbounded time intervals. Bukovinian Mathematical Journal. 2018; 1(1-2).
- Chicago/Turabian Style
- Stepan Dmytrovych Ivasyshen, Halyna Petrivna Ivasyuk, Tonia Mykhailivna Fratavchan. 2018. "On the properties of solutions of some ultraparabolic equations of the Kolmogorov type on unbounded time intervals". Bukovinian Mathematical Journal. 1 no. 1-2.