Перейти до основного вмісту
Continuity of distinctly measurable polyadditive mappings
Maslyuchenko Volodymyr Kyrylovych 1 , Maslyuchenko Oleksandr Volodymyrovych 2,1 , Rizun M. V. 3
1 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
2 Institute of Mathematics, University of Silesia in Katowice, Katowice, 40-007, Poland
3 Chernivtsi National University named after Yuriy Fedkovych, Chernivtsi, 58002, Ukraine
Keywords: continuity, polyadditive mappings
Abstract
We prove that every separately Baire measurable $n$ -additive map $f: X_1 × ... × X_n →Z$ is jointly continuous if $X_1, ... , X_n$ be completely metrizable topological groups and $Z$ be a metrizable topological group.
References

[1] Banakh S.S. Course of functional analysis. – Kyiv: Soviet school, 1948. – 216 p.

[2] Christensen J.P.R., Fisher P. Joint continuity of measurable biadditive mappings // Proc. Amer. Math. Soc. – 1988. – 103 , № 4. – P. 1125–1128. 

[3] Masliuchenko V., Rizun M. Generalisation of one Christensen-Fisher theorem // International Conf. on Computational Analysis in Memory of A.A. Goldberg (1930-2008), 31 May - 5 June. 2010, Lviv: abstracts - Lviv, 2010. - P. 113-114.

[4] Breckenridge J.C., Nishiura T. Partial continuity, quasicontinuity and Baire spaces // Bull. Inst. Math. Acad. Sinica. – 1976. – 4, № 2. – P. 191–203.

[5] Kuratovsky K. Topology. Vol.1. - Moscow: Mir, 1966. - 594 p.

[6] Oxtoby J. Measure and Category. - Moscow:Mir, 1974. - 160 p.

[7] Maslyuchenko V.K. First types of topological vector spaces - Chernivtsi: Ruta, 2002. - 72 p.

[8] Calbrix J., Troallic J.P. Applications séparément continues // C.R. Acad. Sci. Paris. Sér. A. – 1979. – 288 . – P. 647–648.

[9] Maslyuchenko V.K. The expanses of Ghana and the task of Dini // Mat. metody i fiz.-mech. pol. - 1998. - 41 , № 4. - P. 39-45.

[10] Bochnak J., Siciak J. Polinomials and multilinear mappings and topological vector spaces // Stud. Math. – 1971. – 39 . – P. 59–76.

Cite
ACS Style
Maslyuchenko, V.K.; Maslyuchenko, O.V.; Rizun , M.V. Continuity of distinctly measurable polyadditive mappings. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Maslyuchenko VK, Maslyuchenko OV, Rizun MV. Continuity of distinctly measurable polyadditive mappings. Bukovinian Mathematical Journal. 2018; 1(1-2).
Chicago/Turabian Style
Volodymyr Kyrylovych Maslyuchenko, Oleksandr Volodymyrovych Maslyuchenko, M. V. Rizun . 2018. "Continuity of distinctly measurable polyadditive mappings". Bukovinian Mathematical Journal. 1 no. 1-2.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings