Перейти до основного вмісту
Power series of the Gevrey class and some integral and differential operators of infinite order
Verbinina Ksenia 1 , Hefter Sergey 2
1 V. N. Karazin Kharkiv National University, Kharkiv, 61000, Ukraine
2 Department of Fundamental Mathematics, Karazin's Kharkiv National University, Kharkiv, 61022, Ukraine
Keywords: рower series of the Gevrey class, differential operators
Abstract

The classical results, concerned with the integration operator, are considered from the Gevrey formal power series point of view. Using the notion of the Cauchy-Laurent integral, the integral representation of the Dickson type is obtained for some differential operators of infinite order.

References

[1] Korobeinik Y.F. Shift operators on numerical families. - Rostov: Iz-vost Rostov Un-ta, 1983. - 154 p.

[2] Fage M.K., Nagnibida N.I. The problem of equivalence of ordinary linear differential operators. - Novosibirsk : Nauka, 1987. - 150 p.

[3] Gorodetsky V.V. Cauchy problems for evolutionary equations of infinite order. - Chernivtsi: Ruta, 2005.

[4] Yasutaka Sibuya. Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation. - Providence: AMS, 1990.

[5] D.Sauzin. Mould expansions for the saddlenode and resurgence  monomials. Renormalization and Galoistheories // IRMALect. Math. Theor. Phys.,15 ,Eur. Math. Soc., Zürich, 2009, р.83-163.

[6] S.Grabiner. A formal power series operational calculus for quasinilpotent operators // Duke Math. J.,no.38 (1971),p.641-658.

[7] Hefter S.L., Mokrenyuk V. Power series $\sum _{n=0}^∞ n!z^n$ and holomorphic solutions of some differential equations in Banach space // Journal of Mathematical Physics, Analysis and Geometry , 1 ( 2005 ) , p . 53 - 70.

[8] Linchuk S.S. Current applicability of integral operators of infinite order to some classes of integer functions // Scientific Bulletin of Cenovetsky University, issue 349, Mathematics, 2007, p. 70-73.

[9] D.G. Dickson. Infinite order differential equations // Proceedings of the Amer.Math.Soc.,Vol.15,No.4 (Aug.,1964), р.638-641.

[10] Helemsky A.J. Banach and polynormalised algebras : a general theory of homology representation . - Moscow : Nauka , 1989. - 464 p .

[11] Burbaki N. Topological vector spaces .- Moscow : Izd-vo foreign litt. 1959. 410 p.

Cite
ACS Style
Verbinina , K.; Hefter, S. Power series of the Gevrey class and some integral and differential operators of infinite order. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Verbinina K, Hefter S. Power series of the Gevrey class and some integral and differential operators of infinite order. Bukovinian Mathematical Journal. 2018; 1(528 ).
Chicago/Turabian Style
Ksenia Verbinina , Sergey Hefter. 2018. "Power series of the Gevrey class and some integral and differential operators of infinite order". Bukovinian Mathematical Journal. 1 no. 528 .
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings