Перейти до основного вмісту
Oscillations of almost continuous functions
Maslyuchenko Oleksandr Volodymyrovych 1,2
1 Institute of Mathematics, University of Silesia in Katowice, Katowice, 40-007, Poland
2 Department of Mathematical Analysis, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: almost continuous functions
Abstract

We prove that a function defined on a normal countably resolvable space is the oscillation of an almost continuous function if and only if it is the sum of two quasi-continuous upper semicontinuous nonnegative functions.

References

[1] Maslyuchenko O.V. The discontinuity point sets of quasi-continuous functions // Bul. Austral. Math. Soc. - 75, N3-2007. - P.373-379.

[2] Maslyuchenko O.V. The oscillation of quasi-continuous functions on pairwise attainable spaces // Houston Journal of Mathematics - 2009. - 35 , N1. - P. 113-130.

[3] Banakh T., Maslyuchenko V., Mykhailiuk V., Pshenichko M. The set of discontinuity points of almost continuous functions / / Mat. Studii. - 2000. - 14, № 1. - P.89-96.

[4] Engelking R. General topology. - Moscow: Mir, 1986. - 752 p.

[5] Hu S., Papageorgiou N.S. Handbook of Multivalued Analysis. Vol. I: Theory. - Kluwer Academic Publishers, 1997 - 969 p.

Cite
ACS Style
Maslyuchenko, O.V. Oscillations of almost continuous functions. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Maslyuchenko OV. Oscillations of almost continuous functions. Bukovinian Mathematical Journal. 2018; 1(528 ).
Chicago/Turabian Style
Oleksandr Volodymyrovych Maslyuchenko. 2018. "Oscillations of almost continuous functions". Bukovinian Mathematical Journal. 1 no. 528 .
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings