We prove that a function defined on a normal countably resolvable space is the oscillation of an almost continuous function if and only if it is the sum of two quasi-continuous upper semicontinuous nonnegative functions.
[1] Maslyuchenko O.V. The discontinuity point sets of quasi-continuous functions // Bul. Austral. Math. Soc. - 75, N3-2007. - P.373-379.
[2] Maslyuchenko O.V. The oscillation of quasi-continuous functions on pairwise attainable spaces // Houston Journal of Mathematics - 2009. - 35 , N1. - P. 113-130.
[3] Banakh T., Maslyuchenko V., Mykhailiuk V., Pshenichko M. The set of discontinuity points of almost continuous functions / / Mat. Studii. - 2000. - 14, № 1. - P.89-96.
[4] Engelking R. General topology. - Moscow: Mir, 1986. - 752 p.
[5] Hu S., Papageorgiou N.S. Handbook of Multivalued Analysis. Vol. I: Theory. - Kluwer Academic Publishers, 1997 - 969 p.
- ACS Style
- Maslyuchenko, O.V. Oscillations of almost continuous functions. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Maslyuchenko OV. Oscillations of almost continuous functions. Bukovinian Mathematical Journal. 2018; 1(528 ).
- Chicago/Turabian Style
- Oleksandr Volodymyrovych Maslyuchenko. 2018. "Oscillations of almost continuous functions". Bukovinian Mathematical Journal. 1 no. 528 .