We prove the correct solvability of a multi-point problem for evolution equation with pseudoBessel operator of infinite order in the class of distribution of Sobolev-Shvarts.
[1] Matiychuk M.I. Parabolic singular boundary value problems / Mykhailo Ivanonych Matiychuk. - Kyiv: Institute of Mathematics of the National Academy of Sciences of Ukraine, 1999. - 176 p.
[2] Gorodetsky V.V. Bessel operators of infinite order and their applications / Vasyl Vasylovich Gorodetsky, Olga Vasylivna Martyniuk // Reports of the National Academy of Sciences of Ukraine. - 2003. - Nº 6. - P. 7-12.
[3] Gorodetsky V.V. Cauchy problem for evolutionary equations with differentiation and Bessel operators of infinite order / Vasyl Vasylovich Gorodetsky, Olga Vasylivna Martyniuk // Reports of the National Academy of Sciences of Ukraine. - 2003. - Nº 9. - P. 18-24.
[4] Tupkalo I.S. Two-point problem for evolutionary equations with the Bessel operator of infinite order / I.S. Tupkalo // Scientific Bulletin of Chernivtsi University: Collection of Scientific Proceedings, Issue 451. Mathematics. - Chernivtsi: Ruta, 2009. - P. 116-127.
[5] Vladimirov V.S. Equations of mathematical physics / Vasily Sergeevich Vladimirov. - M.: Nauka, 1976. - 528 p.
[6] Levitan B.I. Expansion in Bessel functions in Fourier series and integrals / B.I. Levitan // Uspekhi mat. sciences. - 1951. - Vol. 6, issue 2. - P. 102-143.
[7] Zhitomirskii Ya. I. The Cauchy problem for systems of linear partial differential equations with a Bessel differential operator / Ya. I. Zhitomirskii / Matem. sb. - 1955. V. 36, N 2. - P. 299-310.
[8] Gelfand I.M. Some questions of the theory of differential equations / I.M. Gelfand, G.E. Shilov. - M.: Fizmattiz, 1958. - 274 p.\
[9] Gotynchan T.I. On non-triviality and embedding of spaces of type $W$ / T.I. Gotynchan // Scientific Bulletin of Chernivtsi University: 3b. scientific pr. Issue 160. Mathematics. Chernivtsi: Ruta, 2003. P. 39-44.
[10] Gotynchan T.I. Different forms of definition of spaces of type $W$ / T.I. Gotynchan, R.M. Atamanyuk / / Scientific Bulletin of Chernivtsi University: 3b. scientific pr. Issue 111. Mathematics. - Chernivtsi: Ruta, 2001. - P. 21-26.
- ACS Style
- Gorodetskii, V.; Tupkalo, I.S. Multipoint problem for evolutionary singular equations of infinite order. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Gorodetskii V, Tupkalo IS. Multipoint problem for evolutionary singular equations of infinite order. Bukovinian Mathematical Journal. 2018; 1(528 ).
- Chicago/Turabian Style
- Vasyl Gorodetskii, Ivan Stepanovych Tupkalo. 2018. "Multipoint problem for evolutionary singular equations of infinite order". Bukovinian Mathematical Journal. 1 no. 528 .