We investigated the Bernstein function $φ: \mathbb{R} → \mathbb{R}, φ(λ) = E_{n-1} (f - r_n + λe_n),$ set its basic properties and found an explicit form in the case when $f(x) = x^2, n=1.$
[1] Bernstein S.N. Sur le probléme inverse de la theorie de la meilleure approximation des fonctions continues // Comp. Rend. - 1938. - 206 . - P. 1520-1523.
[2] Kroo A. The continuoty of best approximatious. Acta Math. Acad. Sci. Hungary. - 1977. - 30 .- P.175- 188.
[3] Akhiezer N.I. Lectures on approximation theory. - M.: Nauka, 1965. - 407 p.
[4] Bernstein S.N. On an inverse problem of approximation theory / /Collected works in 4 volumes. Moscow: Publishing house of the USSR Academy of Sciences, 1954. - V.2. - P.292-294.
[5] Voloshyn G.A., Maslyuchenko V.K. On the functional generalization of one of Bernstein's theorems //International conference dedicated to the 100th anniversary of M.M. Bogolyubov and the 70th anniversary of M.I. Nagnibida., June 8-13, 2009. Abstracts of reports. Chernitsi 2009. - P.149-150.
[6] Voloshin G.A., Maslyuchenko V.K. On the question of generalization of one Bernstein theorem/ / FM 2009 Conference "Functional Methods in Approximation Theory and Operator Theory III"dedicated to the memory of V.K. Dzyadyk (1919-1998)., August 22-26, 2009. Abstracts. Kuiv, 2009. - P.106-107.
- ACS Style
- Voloshyn, G.A. On one Bernstein function. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Voloshyn GA. On one Bernstein function. Bukovinian Mathematical Journal. 2018; 1(501).
- Chicago/Turabian Style
- Galina Arkadievna Voloshyn. 2018. "On one Bernstein function". Bukovinian Mathematical Journal. 1 no. 501.