Necessary and sufficient conditions of the exponential stability in the mean square are obtained for solutions of linear dynamical systems of random structure with parametric perturbations.
[1] Hysman I.I. Stochastic differential equations and their applications / I.I. Hykhman, A.V. Skorokhod - K.: Naukova dumka, 1982. - 612 p.
[2] Dunford N. Linear operators / N. Dunford, J. Schwartz - M.: IL, 1962. - Volume 1. - 895 p.
[3] Dynkin E.B. Markov processes / E.B. Dynkin - M.: Fizmatgiz, 1969. - 859 p.
[4] Kato T. Theory of perturbed linear operators / T. Kato - M.: Mir, 1972. - 742 p.
[5] Kats I. Ya. The method of Lyapunov functions in problems of stability and stabilization of systems of random structure / I.Ya. Kats - Yekaterinburg: UGAPS, 1998. - 222 p.
[6] Koroliuk V.S. Stability of autonomous dynamic systems with fast Markov switching / V.S. Korolyuk // Dokl. Academy of Sciences of the USSR. Ser. AND. - 1990.- № 6. - P. 16-19.
[7] Korolyuk V.S. Probability, statistics and random processes. Theory and computer practice. In 3 volumes. T. 3: Random processes. Theory and computer practice / V.S. Korolyuk, E.F. Tsarkov, V.K. Yasinsky - Chernivtsi: Publishing house "Zoloti litavry", 2009. - 798 p.
[8] Crane M.G. Linear operators leaving an invariant cone in the Banach space / M.G. Crane, N.A. Rutman // Success in math. of science - 1947. - Volume 3, Issue 1. - P. 3-95.
[9] Naimark M.A. Linear differential operators / M.A. Naimark - M.: Nauka, 1969. - 526 p.
[10] Pastor L.A. The spectrum of random self-adjoint operators / L.A. Pastur // Uspekhi mat. Sciences, - T.28., V.2. - 1973. - P. 3-34.
[11] Skorohod A.V. Asymptotic methods of the theory of stochastic differential equations / A.V. Skorokhod - K.: Naukova dumka, 1987. - 328 p.
[12] Tikhonov V.I. Markov processes / V.I. Tikhonov, M.A. Mironov - Moscow: Nauka, 1981. - 423 p.
[13] Hasminsky R.Z. Stability of systems of differential equations under random perturbations of their parameters / R.Z. Khasminsky - M.: Nauka, 1969. - 367 p.
[14] Hille E. Functional analysis and semi-groups / E. Hille, R. Phillips - M.: Il, 1962. - 829 p.
[15] Tsarkov E.F. Random perturbations of differential functional equations / E.F. Tsarkov - Riga: Zinatne, 1989. - 421 p.
[16] Blankenship G. Stability and control of stochastic systems with wide - bind noise disturbances / G. Blankenship, Gr. Papanicolaun // 1. SJAM. Appl. Math. 34. - 1978, - pp 437-476.
- ACS Style
- Lukashiv, T.O. Necessary and sufficient conditions for exponential stability in the mean square of solutions of linear dynamic systems of random structure with parametric disturbances. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Lukashiv TO. Necessary and sufficient conditions for exponential stability in the mean square of solutions of linear dynamic systems of random structure with parametric disturbances. Bukovinian Mathematical Journal. 2018; 1(501).
- Chicago/Turabian Style
- Taras Olegovich Lukashiv. 2018. "Necessary and sufficient conditions for exponential stability in the mean square of solutions of linear dynamic systems of random structure with parametric disturbances". Bukovinian Mathematical Journal. 1 no. 501.