Перейти до основного вмісту
Necessary and sufficient conditions for exponential stability in the mean square of solutions of linear dynamic systems of random structure with parametric disturbances
Lukashiv Taras Olegovich 1
1 Department of Mathematical Problems of Management and Cybernetics, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: necessary and sufficient conditions, exponential stability
Abstract

Necessary and sufficient conditions of the exponential stability in the mean square are obtained for solutions of linear dynamical systems of random structure with parametric perturbations.

References

[1] Hysman I.I. Stochastic differential equations and their applications / I.I. Hykhman, A.V. Skorokhod - K.: Naukova dumka, 1982. - 612 p.

[2] Dunford N. Linear operators / N. Dunford, J. Schwartz - M.: IL, 1962. - Volume 1. - 895 p.

[3] Dynkin E.B. Markov processes / E.B. Dynkin - M.: Fizmatgiz, 1969. - 859 p.

[4] Kato T. Theory of perturbed linear operators / T. Kato - M.: Mir, 1972. - 742 p.

[5] Kats I. Ya. The method of Lyapunov functions in problems of stability and stabilization of systems of random structure / I.Ya. Kats - Yekaterinburg: UGAPS, 1998. - 222 p.

[6] Koroliuk V.S. Stability of autonomous dynamic systems with fast Markov switching / V.S. Korolyuk // Dokl. Academy of Sciences of the USSR. Ser. AND. - 1990.- № 6. - P. 16-19.

[7] Korolyuk V.S. Probability, statistics and random processes. Theory and computer practice. In 3 volumes. T. 3: Random processes. Theory and computer practice / V.S. Korolyuk, E.F. Tsarkov, V.K. Yasinsky - Chernivtsi: Publishing house "Zoloti litavry", 2009. - 798 p.

[8] Crane M.G. Linear operators leaving an invariant cone in the Banach space / M.G. Crane, N.A. Rutman // Success in math. of science - 1947. - Volume 3, Issue 1. - P. 3-95.

[9] Naimark M.A. Linear differential operators / M.A. Naimark - M.: Nauka, 1969. - 526 p.

[10] Pastor L.A. The spectrum of random self-adjoint operators / L.A. Pastur // Uspekhi mat. Sciences, - T.28., V.2. - 1973. - P. 3-34.

[11] Skorohod A.V. Asymptotic methods of the theory of stochastic differential equations / A.V. Skorokhod - K.: Naukova dumka, 1987. - 328 p.

[12] Tikhonov V.I. Markov processes / V.I. Tikhonov, M.A. Mironov - Moscow: Nauka, 1981. - 423 p.

[13] Hasminsky R.Z. Stability of systems of differential equations under random perturbations of their parameters / R.Z. Khasminsky - M.: Nauka, 1969. - 367 p.

[14] Hille E. Functional analysis and semi-groups / E. Hille, R. Phillips - M.: Il, 1962. - 829 p.

[15] Tsarkov E.F. Random perturbations of differential functional equations / E.F. Tsarkov - Riga: Zinatne, 1989. - 421 p.

[16] Blankenship G. Stability and control of stochastic systems with wide - bind noise disturbances / G. Blankenship, Gr. Papanicolaun // 1. SJAM. Appl. Math. 34. - 1978, - pp 437-476.

Cite
ACS Style
Lukashiv, T.O. Necessary and sufficient conditions for exponential stability in the mean square of solutions of linear dynamic systems of random structure with parametric disturbances. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Lukashiv TO. Necessary and sufficient conditions for exponential stability in the mean square of solutions of linear dynamic systems of random structure with parametric disturbances. Bukovinian Mathematical Journal. 2018; 1(501).
Chicago/Turabian Style
Taras Olegovich Lukashiv. 2018. "Necessary and sufficient conditions for exponential stability in the mean square of solutions of linear dynamic systems of random structure with parametric disturbances". Bukovinian Mathematical Journal. 1 no. 501.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings