Перейти до основного вмісту
Mixed problem for a nonlinear ultraparabolic equation in a non-cylindrical domain
Protsakh Nataliya Petrivna 1
1 Department of Mathematics and physics, National Forestry and Wood Technology University of Ukraine, Lviv, 79057, Ukraine
Keywords: mixed problem, a nonlinear ultraparabolic equation
Abstract

A mixed problem for ultraparabolic equations that contain a power nonlinearities is considered in non-cylindrical domains. The classes of domains in which the problem has the unique solution are found. Some estimates and the behaviour for the solution as t depending on the initial data of the problem are found.

References

[1] Lascialfari F., Morbidelli D. A boundary value problem for a class of quasilinear ultraparabolic equations // Commun. Part. Diff. Equat. - 1998. - V. 23, 5,6. - P. 847-868.

[2] Lavreniuk S. P., Protsakh N. P. Mixed problem for a nonlinear ultraparabolic equation that generalizes the diffusion equation with inertia// Ukr. Mat. Journal. - 2006. T. 58, № 9. - P. 1192-1210.

[3] Lavrenyuk S., Protsakh N. Boundary value problem for nonlinear ultraparabolic equation in unbounded with respect to time variable domain// Tatra Mt. Math. Publ. - 2007. - V.38.- P. 131-146.

[4] Protsakh N.P. Properties of solutions of a mixed problem for a nonlinear ultraparabolic equation / / Ukr. Math. Journal - 2009. - T.61, № 6. - P.795-809.

[5] Lions J.-L. Une remarque sur les problemes d'evolution nonlineaires dans les domaines non cylindriques // Rov. Romaine Pures Appl. Math. - 1964. - V. 9. - P. 11-18.

[6] Medeiros L. A. Non-linear wave equations in domains with variable boundary // Arch. Rational Mech. Anal. - 1972. - V. 47, № 1. - P. 47-58.

[7] Kozhanov A. I., Larkyi N. AND. On the solvability of boundary-value problems for the wave equation with non-linear dissipation in non-cylindrical regions// Sib. mate. journal - 2001. - Vol. 42, № 6. - p. 1278-1299.

[8] Santos M.L., Rocha M.P.C., Braga P.L.O. Global solvability and asymptotic behaviour for a nonlinear coupled system of viscoelastic waves with memory in a noncylindrical domain // J. Math. Anal. Appl. - 2007. - V. 325. - P. 1077-1094.

[9] Altutov Yu. A. $L_p$ solvability of the Dirichlet problem for heat conduction equations in non-cylindrical regions // Mat. Sat. - 2002. - T.193, № 9. - C.3-40.

[10] Kamynin L. I., Maslennikova V. N. On the solution of the first boundary value problem for the quasi-linear parabolic equation in non-cylindrical regions // Mat. Sat. - 1962. -T. 57 (99), № 2. - P. 241-264.

[11] Eidelman S. D., Ivasyshen S. D., Kochubei A. N. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type, Operator Theory: Adv. and Appl. - 2004. - 152 .- 390 p.

Cite
ACS Style
Protsakh , N.P. Mixed problem for a nonlinear ultraparabolic equation in a non-cylindrical domain. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Protsakh NP. Mixed problem for a nonlinear ultraparabolic equation in a non-cylindrical domain. Bukovinian Mathematical Journal. 2018; 1(501).
Chicago/Turabian Style
Nataliya Petrivna Protsakh . 2018. "Mixed problem for a nonlinear ultraparabolic equation in a non-cylindrical domain". Bukovinian Mathematical Journal. 1 no. 501.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings