Перейти до основного вмісту
Boundary-value problem with parameters for a system with a linearly transformed argument
Filipchuk Mykola Petrovych 1
1 Department of Aplied Mathematics and Information Technologies, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58000, Ukraine
Keywords: boundary-value problem, a system with a linearly transformed argument
Abstract

The question of existence and approximate construction of a solution for a differential equations system with linearly transformed argument and two parameters in two-point boundary conditions is investigated by the numerical-analytical method.

References

[1] Samoylenko A.M., Roito N.I. Numerical and analytical methods for studying solutions to boundary value problems. - K.: Nauk. dumka, 1985. - 224 p.

[2] Samoylenko A.M., Ronto N.I. Numerical and analytical methods in the theory of boundary value problems of ordinary differential equations. - K.: Nauk. dumka, 1992. - 280 p.

[3] Ronto N.I., Samoylenko A.M., Trofimchuk S.I. Theory of numerical-analytical method: achievements and new directions of development. II // Ukr. mat. zhurn. - 1998. - V. 50, N 7. - P. 960-979.

[4] Yanchuk S.V. Investigation of non-autonomous differential equations and Chua systems: Dissertation ... Department of Physics and Mathematics. - Kyiv, 1997. - 111 p.

[5] Augustynowicz A., Kwapisz M. On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type // Math. Nachr. - 1990. - 145 . - P. 255-269.

[6] Filipchuk M.P., Bigui Y.Y. Numerical-analytical method for studying multipoint boundary value problems for systems of differential equations with transformed argument // Ukr. Mat. Journal - 1998. - Vol. 50, N 11. - P. 1581-1585.

[7] Filipchuk M.P. Problem with integral boundary conditions for a system of differential equations with transformed argument // Boundary value problems for differential equations: 3b. scientific pr. Chernivtsi: Prut, 2001. - Issue 7. - P. 243-250.

[8] Filipchuk M.P. Boundary value problem with a parameter for a system with transformed argument // Nauk. Visnyk Chernivtsi Univ. Issue 150. Mathematics. - Chernivtsi: Ruta, 2002. - P. 103-106.

[9] Filipchuk M.P. Problem with unfixed right boundary for a system with transformed argument // Scientific Bulletin of Chernivtsi University. Issue 191-192. Mathematics. - Chernivtsi: Ruta, 2004. - P. 137-140.

[10] Filipchuk M.P. Kraiova problem with parameters for a system with transformed argument // Scientific Bulletin of Chernivtsi University. Issue 374. Mathematics. - Chernivtsi: Ruta, 2008. - P. 132-135.

Cite
ACS Style
Filipchuk, M.P. Boundary-value problem with parameters for a system with a linearly transformed argument. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Filipchuk MP. Boundary-value problem with parameters for a system with a linearly transformed argument. Bukovinian Mathematical Journal. 2018; 1(501).
Chicago/Turabian Style
Mykola Petrovych Filipchuk. 2018. "Boundary-value problem with parameters for a system with a linearly transformed argument". Bukovinian Mathematical Journal. 1 no. 501.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings