Some properties of a free Banach space and its norm, the projective tensor product of free Banach spaces are established and an analogue of the tensor product for metric spaces is constructed using Lipschitz mappings.
[1] Markov A. A. On free topological groups // DAN SS. 1941. - 31. - P. 299-302.
[2] Raikov D. AND. Free locally convex spaces of uniform spaces // Mathematical collection. - 1964. - 63, № 4. - P. 582-590.
[3] Dubei M., Tymchatyn E. D., Zagorodnyuk A. Free Banach Spaces and Extension of Lipschitz Maps // Topology, Elsevier. 2009. - 48 , № 2. - P. 203-213.
[4] Flood J. Free topological vector spaces. Ph.D. thesis, Australian National University. - Candberra, 1975. - 109 p.
[5] Pestov V. Free Banach spaces and representation of topological groups // Functional Anal. Appl. - 1986. - 20 . - P. 70-72.
[6] Pestov V. Douady's conjecture on Banach analytic spaces // C.R. Acad. Sci. Paris 319 séries I. - 1994. - P. 1043-1048.
[7] Weaver N. Lipschitz Algebras. World Scientific. - Singapore, New Jersey, London, Hong Kong, 1999. - 223 p.
- ACS Style
- Dubey, M.V. Biplane mappings and the analogue of the tensor product of metric spaces. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Dubey MV. Biplane mappings and the analogue of the tensor product of metric spaces. Bukovinian Mathematical Journal. 2018; 1(501).
- Chicago/Turabian Style
- Maria Volodymyrivna Dubey. 2018. "Biplane mappings and the analogue of the tensor product of metric spaces". Bukovinian Mathematical Journal. 1 no. 501.