Перейти до основного вмісту
Solving a singular Cauchy problem
Zernov Oleksandr Evgeniovych 1 , Kuzina Yu. V. 2
1 Department of Algebra and Geometry, South Ukrainian State Pedagogical University named after K. D. Ushynsky, Odesa, 65020, Ukraine
2 Odessa Institute of Finance of the Ukrainian State University of Finance and International Trade, Odessa, 65070, Ukraine
Keywords: Cauchy problem
Abstract

For an implicit initial value problem the existence of the unique continuously differentiable solution with definite asymptotics is proved.

References

[1] Vazov V. Asymptotic expansions of solutions of ordinary differential equations. - M: Mir, 1968. - 464 p.

[2] Vitok A. N. Generalized Cauchy problem for a system of differential equations not solved with respect to derivatives / / Differential Equations. - 1971. - Vol. 7, $N^{βo}$ 9. - P. 1575-1580.

[3] Davydov A. A. Normal form of a differential equation not solved with respect to the derivative in the neighborhood of a singular point // Funct. Anal. Appl. - 1985. - Vol. 19. $N^{βo}$ 2.- p. 1-10.

[4] Demidovich B. P. Lectures on the mathematical theory of stability. - M.: Nauka, 1967. - 472 p.

[5] Erugin N. P. A book for reading on the general course of differential equations. - Minsk: Science and Technology, 1972. - 664 p.

[6] Zernov A. E. Qualitative analysis of implicit singular Cauchy problem // Ukr. mat. zhurn. - 2001.- V.53.- $N^{βo}$ 3.- P. 302-310.

[7] Zernov A. E., Kuzina Yu. V. Qualitative study of the singular Cauchy problem $F(t, x(t), x' (t)) = 0, x(0) = 0$ // Ukr. mat. jour. - 2003.— V.55.— $N^{βo}$ 12.— P.1720-1723.

[8] Zernov O. E., Kuzina Yu. V. Geometric analysis of the Cauchy problem for an implicit differential equation / / Math. Studies. — 2008.— T.29.— $N^{βo}$ 1.— P.63—70.

[9] Zernov A. E., Kuzina Yu. V. Geometric analysis of some singular Cauchy problem // Nonlinear oscillations. - 2004. - Vol. 7. - $N^{βo}$ 1. - P. 67-80.

[10] Kiguradze I. T. On the Cauchy problem for singular systems of ordinary differential equations // Differential Equations. - 1965. - Vol. 1. - $N^{βo}$ 10. - P. 1271-1291.

[11] Rudakov V. P. On the existence and uniqueness of solutions of systems of first-order differential equations partially resolved with respect to derivatives // Izvestiya vyssh. ucheb. zavedeniya. Mathematics. - 1971. - $N^{βo}$ 9. - P. 79-84.

[12] Samoilenko A. M., Perestyuk M. O., Parasyuk I. O. Differential Equations. —K.: Lybid,— 2003.—600p.

[13] Chechik V. A. Study of systems of ordinary differential equations with singularity // Proceedings of the Moscow. mathematical society. - 1959. - $N^{βo}$ 8.- P.155-198.

[14] Anichini G., Conti G. Boundary value problems for implicit ODE's in a singular case // Different. Equat. and Dynam. Syst.- 1999.- B.7.- $N^{βo}$ 4.- P.437-459.

[15] Conti R.  Sulla risoluzione dell'equazione $F (t,x, {dx \over dt}) = 0$ // Ann. mat. pura ed appl.- 1959. - $N^{βo}$ 48.- P.97-102.

[16] Kowalsky Z. The polygonal method of solving the differential equation $y' = h (t, y, y, y')$ // Ann. Polon. Math.- 1963.- B.13. - $N^{βo}$ 2.- P.173-204.

Cite
ACS Style
Zernov, O.E.; Kuzina , Y.V. Solving a singular Cauchy problem. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Zernov OE, Kuzina YV. Solving a singular Cauchy problem. Bukovinian Mathematical Journal. 2018; 1(485).
Chicago/Turabian Style
Oleksandr Evgeniovych Zernov, Yu. V. Kuzina . 2018. "Solving a singular Cauchy problem". Bukovinian Mathematical Journal. 1 no. 485.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings