It has been obtained the existence and uniqueness classes of nonlinear elliptic inequalities given in unbounded quasicylindrical domains under some conditions on the solution's behaviour and restrictions on initial data's growth. We use the method based on Saint-Venant's principle analogue.
[1] Zhikov V. V. Averaging of functionals of the calculus of variations and elasticity theory // Math. USSR. - 1987. - 9 . - p.33-66.
[2] Ru̇z̆ička M. Electrorheological Fluids: Modeling and Mathematical Theory. - Springer, Berlin, 2000.
[3] Simon L. On strongly nonlinear elliptic variational inequalities // Acta Math. Hungar. - 1988. - 52 ,№ 1-2. - P.147-164.
[4] Simon L. On uniqueness, regularity and stability of solutions of strongly nonlinear elliptic variational inequalities // Acta Math. Hungar. - 1990. - 55 ,№ 3 - 4. - P.379-392.
[5] Medvid I.M. Elliptic variational inequality in unbounded domains / / Mat. methods and phys.-mechan. fields. — 2006. - 49, № 2. - P.108-116.
[6] Bokalo M.M., Kushnir O.V. Variational nonlinear elliptic inequalities with variable nonlinearity indices // Scientific Bulletin of Chernivtsi University: Collection of Sciences, Proceedings. Issue 288. Mathematics. — Chernivtsi: Ruta, 2006. — P.28-38.
[7] Domanska O.V. Variational elliptic inequalities in generalized anisotropic Lebesgue-Sobolev spaces // Nonlinear boundary value problems. - 2008. - 18. - P.1-19.
[8] Bokalo M.M., Kushnir O.V. Variational nonlinear elliptic inequalities of higher orders with variable nonlinearity indices / / Visnyk Lviv Univ. Series Mech.-Mat. - 2006. - 66. - P.20-35.
[9] Domanska O.V. Nonlinear elliptic equations in quasi-cylindrical domains // Visnyk Lviv Univ. Series Mech.-Mat. - 2007. - 67. - P.104—118.
[10] Kováčicik O., Rákosníc J. On spaces $L^{p(x)}(Ω)$ and $W^{1,p(x)}$ Czechosl. Math. J. - 1991. - 41 , №4. - P.592-618.
[11] Oleinyk O. A., Iosifyan G. AND. An analogue of the Saint-Venant principle and the uniqueness of solutions of boundary value problems in unbounded regions for parabolic equations // Uspekhi Mat. of science - 1976. — 31, № 6. - P. 142—166.
[12] Bokalo N. M. Energy estimates of solutions and unique solvability of the Fourier problem for linear and quasi-linear parabolic equations // Differential Equations. - 1994. - 30, № 8. - P.1325-1334.
[13] Lyons Zh.-L. Some methods of solving non-linear boundary value problems. - M.: Mir, 1972. - 608 p.
[14] Shishkov A.E. Solvability of boundary value problems for quasilinear elliptic and parabolic equations in unbounded domains in classes of functions growing at infinity // Ukr. mate. journal - 1995. - 47, № 2. - P.277-289.
- ACS Style
- Domanska, O.V. Nonlinear elliptic variational inequalities in quasicylindrical domains. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Domanska OV. Nonlinear elliptic variational inequalities in quasicylindrical domains. Bukovinian Mathematical Journal. 2018; 1(485).
- Chicago/Turabian Style
- Olena Viktorivna Domanska. 2018. "Nonlinear elliptic variational inequalities in quasicylindrical domains". Bukovinian Mathematical Journal. 1 no. 485.