We prove the correct solvability of a two-point problem for singular evolution equations of infinite order in classes of generalized functions.
[1] Gorodetsky V.V., Martynyuk O.V. Infinite-order Bessel operators and their applications // Reports of the National Academy of Sciences of Ukraine. - 2003. - № 6. - P. 7 - 12.
[2] Gorodetsky V.V., Martynyuk O.V. Cauchy problem for evolutionary equations with differentiation and Bessel operators of infinite order // Reports of the National Academy of Sciences of Ukraine. - 2003. - № 9. - P. 18 - 24.
[3] Vladimirov V.S. Equations of mathematical physics. - M.: Nauka, 1976. - 528 p.
[4] Levitan B.I. Expansion in Bessel functions in Fourier series and integrals // Uspekhi mat. sciences. - 1951. - Vol. 6, issue 2. - P. 102-143.
[5] Zhitomirsky Ya. I. The Cauchy problem for systems of linear partial differential equations with a Bessel differential operator // Matem. sb. - 1955. - V. 36, № 2. - P. 299-310.
[6] Gelfand I. M., Shilov G. E. Some questions of the theory of differential equations. - M.: Fizmatgiz, 1958. - 274 p.
[7] Gotynchan T.I. On non-triviality and embedding of spaces of type $W$ // Scientific Bulletin of Chernivtsi University: Collection of scientific works. Issue 160. Mathematics. - Chernivtsi: Ruta, 2003. - P. 39 - 44.
[8] Gelfand I.M., Shilov G.E. Spaces of basic and generalized functions. - M.: Fizmatgiz, 1958. - 307 p.
- ACS Style
- Tupkalo, I.S. Two-point problem for evolutionary equations with an infinite-order Bessel operator. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Tupkalo IS. Two-point problem for evolutionary equations with an infinite-order Bessel operator. Bukovinian Mathematical Journal. 2018; 1(454).
- Chicago/Turabian Style
- Ivan Stepanovych Tupkalo. 2018. "Two-point problem for evolutionary equations with an infinite-order Bessel operator". Bukovinian Mathematical Journal. 1 no. 454.