The base of interpolation in antiprism with further exploration of stationary physical field is constructed.
[1] Wenninger M. Models of polyhedra. Translated from English by V.V. Firsov. - M.: Mir, 1974. - 236 p.
[2] Aleksandrov A.D., Netsvetaev N.Yu. Geometry: Textbook. Manual. - M.: Nauka. Chief editor of physical and mathematical literature, 1990. - 672 p.
[3] Mathematical Encyclopedia. M., 1977. Publishing House "Soviet Encyclopedia". Vol. 1, p. 297. Antiprism.
[4] Andreev N.N., Yudin V.A. Extreme locations of points on a sphere / / Mathematical education (third series). 1997. Issue 1. - P. 115-121.
[5] Khomenko A.N., Moiseenko S.V. Geometric modeling of hexagonal bases / / Applied geometry and engineering graphics. - K.: KNUBA, 2006. - Issue 76. - P.37-43.
[6] Kamaeva S.O., Khomenko A.N. Construction of Foma functions on an octagonal finite element / / Bulletin of the Khers. National Technical University. - 2008.- № 2(31). - P. 216-220.
[7] Khomchenko A.N. On the probabilistic construction of basis functions of the FEM. Ivano-Frankivsk. oil and gas institute. - Ivano-Frankivsk, 1982. - 7 p. - Dep. in VINITI 10.21.82, № 5264.
- ACS Style
- Kamaeva , S.O. Method for constructing an interpolation basis in an antiprism. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Kamaeva SO. Method for constructing an interpolation basis in an antiprism. Bukovinian Mathematical Journal. 2018; 1(454).
- Chicago/Turabian Style
- S. O. Kamaeva . 2018. "Method for constructing an interpolation basis in an antiprism". Bukovinian Mathematical Journal. 1 no. 454.