Conditions for the existence and uniqueness of a solution of boundary value problem for a differential equation of order $1 + α, 0 < α < 1$ are obtained.
[1] Nakhushev A.M. / The Sturm-Liouville problem for a second-order ordinary differential equation with fractional derivatives in the lower terms // DANSSSR. - 1977. - T. 234, № 2. - p. 308-311.
[2] Shkhanukov M. Kh. Convergence of difference schemes for differential equations with a fractional derivative // DAN. - 1996. - Vol. 348, № 6.— P. 746 - 748.
[3] Ö zt ü rk I., Shkhanekov M.N. Difference method for the differentional equation with fractional derivative // Indian J. pure appl. math. - 1999. - V. 30, № 5. - P. 517 - 523.
[4] Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives and some of their applications. - Minsk: Technics, 1987. - 668 p.
[5] Krasnoselskyi M.A., Vainikko G.M., Zabreyko P.P., Rutytskyi J.B., Stetsenko V.Ya. Approximate solution of operator equations. - Moscow: Nauka, 1969. - 455 p.
- ACS Style
- Vityuk, O.N.; Mykhailenko , A.V. Boundary-value problem for a fractional-order differential equation. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Vityuk ON, Mykhailenko AV. Boundary-value problem for a fractional-order differential equation. Bukovinian Mathematical Journal. 2018; 1(454).
- Chicago/Turabian Style
- Oleksandr Nikanorovych Vityuk, A. V. Mykhailenko . 2018. "Boundary-value problem for a fractional-order differential equation". Bukovinian Mathematical Journal. 1 no. 454.