We introduce approximation spaces associated with the Legendre differential operators in the Hilbert space $L_2(a, b)$. Besides, we establish estimates of the distance from a given function in $L_2(a, b)$ to a subspace of exponential type vectors with a fixed index.
[1] Gorbachuk M.L., Gorbachuk V.I. On the approximation of smooth vectors of a closed operator by entire vectors of exponential type // Ukr. Mat. Zh. - 1995. - T.47, № 5. - P. 616-628.
[2] Gorbachuk V.I., Gorbachuk M.L. Operator approach to approximation questions // Algebra and analysis. - 1997. - Vol. 9, № 6. - P. 90-108.
[3] Gorbachuk M.L. Signs of completeness of the set of integer vectors of exponential type of an unbounded operator // Supplement to NAS of Ukraine. - 2001. - № 6. - P. 7-11.
[4] Gorbachuk V.I., Knyazyuk A.V. Boundary values of solutions of differential-operator equations // Usp. mat. sciences. - 1989. - V.44, № 3. - P. 55-91.
[5] Dmytryshyn M.I., Lopushansky O.V. Abstract Besov spaces associated with closed operators in Banach spaces // Supplement to the NAS of Ukraine. - 2007. - № 12. - P. 16-22.
[6] Radyno Ya.V. Vectors of exponential type in operator calculus and differential equations // Differential equations. - 1985. - V.21, № 9. - P. 1559-1569.
[7] Triebel H. Interpolation Theory. Function Spaces. Differential Operators. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1995.
[8] Bergh J., Löfström J. Interpolation Spaces. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1976.
- ACS Style
- Dmytryshyn , M.I. Approximation of Legendre differential operators by exponential-type vectors. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Dmytryshyn MI. Approximation of Legendre differential operators by exponential-type vectors. Bukovinian Mathematical Journal. 2018; 1(454).
- Chicago/Turabian Style
- Maryan Ivanovich Dmytryshyn . 2018. "Approximation of Legendre differential operators by exponential-type vectors". Bukovinian Mathematical Journal. 1 no. 454.