Перейти до основного вмісту
Width of verbal subgroups of the group $UT_n (\mathbb{Z})$ generated by words $x^k, k ∈ \mathbb{N}$
Kovdrysh Volodymyr Volodymyrovych 1
1 Institute of Postgraduate Pedagogical Education of Chernivtsi Region, Chernivtsi, 58000, Ukraine
Keywords: verbal subgroups of the group $UT_n (\mathbb{Z})$
Abstract

The width of the verbal subgroups of $UT_n (\mathbb{Z})$ generated by the words $x^k, k ∈ \mathbb{N}$  is found.

References

[1] Kargapolov M.I., Merzlyakov Yu.I. Fundamentals of group theory. - M.: Nauka, 1977. - 238 p.

[2] Merzlyakov Yu.I. Algebraic linear groups as full groups of automorphisms and the closure of their verbal subgroups // Algebra and Logic. - 1967. - V.6, № 1. - P.83-94.

[3] Merzlyakov Yu.I. Rational groups. - M.: Nauka, 1987. - 326 p.

[4] Neumann H. Varieties of groups. - M.: Mir, 1971. - 452 p.

[5] Kovdrysh V.V. Widths of the members of the lower central row of the group of upper unitriangular matrices over a commutative ring with unity / / Scientific Bulletin of Chernivtsi University. - 2006. - Issue 314-315. - P. 91-93.

Cite
ACS Style
Kovdrysh, V.V. Width of verbal subgroups of the group $UT_n (\mathbb{Z})$ generated by words $x^k, k ∈ \mathbb{N}$. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Kovdrysh VV. Width of verbal subgroups of the group $UT_n (\mathbb{Z})$ generated by words $x^k, k ∈ \mathbb{N}$. Bukovinian Mathematical Journal. 2018; 1(349).
Chicago/Turabian Style
Volodymyr Volodymyrovych Kovdrysh. 2018. "Width of verbal subgroups of the group $UT_n (\mathbb{Z})$ generated by words $x^k, k ∈ \mathbb{N}$". Bukovinian Mathematical Journal. 1 no. 349.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings