Some new properties for the fundamental matrix of solutions of the Cauchy problem for $\vec {2b}$ -parabolic systems are investigated.
[1] Eidelman S.D. On one class of parabolic systems / / Reports of the USSR Academy of Sciences. - 1960. - 133, № 1. - P. 40 - 43.
[2] Ivasishen S.D., Eidelman S.D. $\vec {2b}$- parabolic systems // Proc. seminar on functional analysis. - K.: Institute of Mathematics of the Academy of Sciences of the Ukrainian SSR, 1968. - Issue 1. - P. 3 - 175, 271 - 273.
[3] Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type. - Basel- Boston-Berlin: Birkha̋user Verlag, 2004. - 390 p. - (Operator Theory: Advances and Applications. Vol. 152)
[4] Slobodetsky L.N. On the fundamental solution and the Cauchy problem for a parabolic system // Mat. sb. - 1958. - 46, № 2. - P. 229-258.
- ACS Style
- Ivasyshen, S.D.; Ivasyuk, H.P. On the properties of the fundamental matrix of solutions to the Cauchy problem for $\vec {2b}$-parabolic systems. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Ivasyshen SD, Ivasyuk HP. On the properties of the fundamental matrix of solutions to the Cauchy problem for $\vec {2b}$-parabolic systems. Bukovinian Mathematical Journal. 2018; 1(349).
- Chicago/Turabian Style
- Stepan Dmytrovych Ivasyshen, Halyna Petrivna Ivasyuk. 2018. "On the properties of the fundamental matrix of solutions to the Cauchy problem for $\vec {2b}$-parabolic systems". Bukovinian Mathematical Journal. 1 no. 349.