Existence conditions for the fundamental matrix of solutions of the initial problem for a parabolic system of integro-differential equations have been established.
[1] Volterra V. Theory of functionals, integral integro-differential equations. - M.: Nauka, 1982. - 304 p.
[2] Lando Yu.K. Elements of the mathematical theory of motion control. - M.: Education, 1984. - 88 p.
[3] Eidelman S.D. Parabolic systems. - M.: Nauka, 1964. - 444 p.
[4] Friedman A. Partial differential equations of parabolic type. - M.: Mir, 1968. - 427 p.
[5] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N. Linear and quasilinear equations of the parabolic type. - M.: Nauka, 1967.- 736 p.
[6] Ivasishen S.D. Green's matrix of parabolic problems. - K.: Vishcha shkola, 1990. - 199 p.
[7] Matiychuk M.I. Parabolic singular boundary value problems. - Kyiv: Institute of Mathematics, NAS of Ukraine, 1999. - 176 p.
[8] Gelfand I.M. and Shilov G.E. Some questions of the theory of differential equations (Generalized functions, issue 3). - M.: Fizmatgiz, 1958. - 274 p.
- ACS Style
- Danyliuk, A.O. On the fundamental matrix of solutions to the Cauchy problem for a parabolic system of integro-differential equations. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Danyliuk AO. On the fundamental matrix of solutions to the Cauchy problem for a parabolic system of integro-differential equations. Bukovinian Mathematical Journal. 2018; 1(349).
- Chicago/Turabian Style
- Alyona Olegivna Danyliuk. 2018. "On the fundamental matrix of solutions to the Cauchy problem for a parabolic system of integro-differential equations". Bukovinian Mathematical Journal. 1 no. 349.