We obtain sufficient conditions for the existence and uniqueness of a generalized solution in a Tykhonov type class for a mixed problem for an evolution equation in an unbounded on time domain.
[1] Eidelman S. D. Parabolic systems. - M., Nauka, 1964. - 443 p.
[2] Matiychuk M. I., Eidelman S. D. On fundamental solutions and the Cauchy problem for parabolic systems whose coefficients satisfy the Dini condition// Proceedings of the seminar on functional analysis. - Voronezh, 1967. - Issue 9. - P. 54-83.
[3] Ivasyshen S. D., Kondur O. S. On the Green matrix of the Cauchy problem and the characterization of some classes of solutions for $\vec {2b}$ -parabolic systems of arbitrary order/ / Mat. studii. 2000. - T. 14. N 1. - P. 73-84.
[4] Matiychuk M. I. Parabolic singular boundary value problems. - Kyiv, Institute of Mathematics of the National Academy of Sciences of Ukraine, 1999. - 176 p.
[5] Martinenko M. D., Boyko D. F. $\vec {2b}$-parabolic boundary value problems// Differential equations. - 1978. - V. 14. N 12. - P. 2212- 2222.
[6] Balabushenko T. M. Estimates of the fundamental matrix of solutions to the Cauchy problem for 26-parabolic systems in domains unbounded with respect to the time variable and their applications/ / Bulletin of the National University "Lviv Polytechnic". - N 411. Applied Mathematics. - 2000. - P. 6-11.
[7] Balabushenko T. M. On estimates in unbounded domains with respect to the time variable of the fundamental matrix of solutions of the Cauchy problem for $\vec {2b}$-parabolic systems / / Mat. Studii. 2002. - Vol. 17. N 2. - P. 163-174.
[8] Balabushenko T, M., Ivasyshen S. D. On properties of solutions of $\vec {2b}$-parabolic systems in unbounded domains with respect to the time variable / / Mat. Methods and Phys.-Mechanical Fields. - 2002. - Vol. 45. - N 4. - P. 19-26.
[9] Eidelman S. D. On one class of parabolic systems// Reports of the USSR Academy of Sciences. - 1960. - V. 133. N 1. - P. 40-43.
[10] Matiychuk M. I. Fundamental matrices of solutions of general $\vec {2b}$-parabolic and $\vec {2b}$-elliptic systems, the coefficients of which satisfy the integral condition of Hölder// Reports of the National Academy of Sciences of the Ukrainian SSR. - 1964. - N 8. - P. 1010-1013.
[11] Ivasishen S. D., Eidelman S. D. $\vec {2b}$-parabolic systems// Proceedings of the seminar on functional analysis. - Kyiv. Institute of Mathematics of the Academy of Sciences of the Ukrainian SSR. - 1968. Issue 1. P. 3-175, 271-273.
[12] Ivasishen S. D. Integral representation and initial values of solutions of $\vec {2b}$-parabolic systems// Ukr. mat. jour. - 1990. - V. 42. - N 4. - P. 500-506.
[13] Berezan L. P., Ivasyshen S. D. Fundamental matrix of solutions of the Cauchy problem for $\vec {2b}$-parabolic systems with degeneration on the initial hyperplane// Supplement of the National Academy of Sciences of Ukraine. - 1998. - N 12. - P. 7-12.
[14] Berezan L. P., Ivasyshen S. D. On strongly degenerate on the initial hyperplane $\vec {2b}$-parabolic systems/ / Bulletin of the State University "Lviv Polytechnic". Applied Mathematics. - 1998. - N 337. - P. 73-76.
[15] Berezan L. P. Integral representation of solutions of the generalized Cauchy problem for a strongly degenerate on the initial hyperplane $\vec {2b}$-parabolic system// Nauk. Bulletin of Chernivtsi University. Collection of scientific works. Issue 46. Mathematics. Chernivtsi, ChDU. 1999. P. 13-18.
[16] Berezan L. P. Some properties of the fundamental matrix of solutions of the Cauchy problem for $\vec {2b}$-parabolic systems with degeneration on the initial hyperplane// Scientific Bulletin of Chernivtsi University. 3b. Scientific works. Issue 76. Mathematics. - Chernivtsi, Ruta. - 2000. - P. 5-10.
[17] Ivasyshen S. D., Pasichnyk G. S. On the fundamental matrix of solutions of the Cauchy problem for dissipative 26 parabolic systems with degeneration on the initial hyperplane// Supplement of the NAS of Ukraine. - 1999. - No. 6. - P. 18-22.
[18] Pasichnyk G. S. On the fundamental matrix of solutions of the Cauchy problem for dissipative $\vec {2b}$-parabolic systems // Visnyk Lviv University. Ser. Mech.-Mat. - 1999. - No. 54. - P. 140-151.
[19] Pasichnyk G. S. On the solvability of the Cauchy problem for $\vec {2b}$-parabolic systems with increasing coefficients / / Math. methods and phys.-mech. fields. - 1999. - T. 42. No. 3. - P. 61-65.
[20] Ivasyshen S. D., Pasichnyk G. S. On the Cauchy problem for $\vec {2b}$-parabolic systems with increasing coefficients/ / Ukr. Mat. Journal - 2000. - Vol. 52. - No. 11. - P. 1484-1496.
[21] Ivasyshen S. D., Pasichnyk G. S. On the fundamental matrix of solutions of the Cauchy problem for a class of parabolic systems with unbounded coefficients and degeneration on the initial hyperplane / / Nauk. Visnyk Chernivtsi Un-tu. 3b. nauk. prac. Vit. 76. Mathematics. Chernivtsi, Ruta. 2000. P. 82-91.
[22] Gaevsky H., Greger K., Zacharias K. Nonlinear operator differential equations. - M., 1978.
- ACS Style
- Torgan , G.R. Mixed problem for an Eidelman-type evolutionary equation in an unbounded time domain. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Torgan GR. Mixed problem for an Eidelman-type evolutionary equation in an unbounded time domain. Bukovinian Mathematical Journal. 2018; 1(349).
- Chicago/Turabian Style
- Galyna Romanivna Torgan . 2018. "Mixed problem for an Eidelman-type evolutionary equation in an unbounded time domain". Bukovinian Mathematical Journal. 1 no. 349.