Let $X$ be a Baire space, $Y$ be a first /second/ countable space and $Z$ be a normal space. We show that if a closed-valued multifunction $f: X × Y → Z$ is both lower and upper horizontally quasicontinuous and both lower and upper continuous /quasicontinuous/ with respect to the second variable, then it is jointly lower and upper quasicontinuous.
[1] Kempisty S. Sur les fuctions quasicontinues // Fund. Math. - 1932. - 19. - P. 184 - 197.
[2] Neubrunn T. Quasi-continuity // Real Anal. Exch. - 1988. -1989. - 14, № 3. - P. 259 - 306.
[3] Maslyuchenko V.K., Nesterenko V.V. Cumulative continuity and quasi-continuity of horizontally quasi-continuous functions / / Ukr. Mat. Journal - 2000. 52, № 12. - P. 1711- 1714.
[4] Nesterenko V.V. On one characterization of cumulative quasi-continuity // Scientific Bulletin of Chernivtsi University: Collection of scientific papers. Issue 336-337. Mathematics. Chernivtsi: Ruta. 2007, - P. 137 - 141.
- ACS Style
- Nesterenko, V.V. Cumulative quasicontinuity of multivalued mappings. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Nesterenko VV. Cumulative quasicontinuity of multivalued mappings. Bukovinian Mathematical Journal. 2018; 1(349).
- Chicago/Turabian Style
- Vasyl Volodymyrovych Nesterenko. 2018. "Cumulative quasicontinuity of multivalued mappings". Bukovinian Mathematical Journal. 1 no. 349.