We establish the correct solvability of the Cauchy problem for an evolution equation with an initial condition, the right hand side of which is a generalized function of a distribution type.
[1] Gorodetsky V.V. Boundary properties of smooth solutions of parabolic type equations in a layer. - Chernivtsi: Ruta, 1998. - 225 p.
[2] Gelfand I.M., Shilov G.E. Spaces of basic and generalized functions. - M.: Fizmatgiz, 1958. - 307 p.
[3] Levitan B.I. Expansion in Bessel functions in Fourier series and integrals / / Uspekhi mat. sciences. - 1951. - V. 6, issue. - P. 102 - 143.
[4] Gorodetsky V.V., Lenyuk O.M. Fourier-Bessel transform of a class of infinitely differentiable functions / / Boundary value problems for differential equations: 3b. scientific pr. - Chernivtsi: Prut, 2007. Issue 15. - P. 51 - 66.
[5] Lenyuk O.M. Bessel transform of a class of generalized functions of the distribution type / / Scientific Bulletin of Chernivtsi University: Issue 336 - 337. Mathematics. - Chernivtsi: Ruta, 2007. - P. 95 -102.
[6] Tikhonov A.N., Samarsky A.A. Equations of mathematical physics. - M.: Nauka, 1977. - 736 p.
- ACS Style
- Lenyuk, O.M. Cauchy problem for evolution equations with pseudo-Bessel operators. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Lenyuk OM. Cauchy problem for evolution equations with pseudo-Bessel operators. Bukovinian Mathematical Journal. 2018; 1(349).
- Chicago/Turabian Style
- Oleg Mykhailovych Lenyuk. 2018. "Cauchy problem for evolution equations with pseudo-Bessel operators". Bukovinian Mathematical Journal. 1 no. 349.