The localization property of the solutions of evolutionary equations with operators of fractional differentiation of infinite order is investigated.
[1] Rieman B. Works. - M.: Gostekhisdal, 1948. - 542 p.
[2] Alimov Sh.A., Ilyin V.A., Nikishin E.M. Questions of convergence of multiple trigonometric series and spectral decompositions // Uspekhi mat. nauk. - 1976. - V.31, N6. - P.28-83.
[3] Gorbachuk VI, Gorbachuk ML Trigonometric series and generalized periodic functions // Proceedings of the USSR Academy of Sciences. - 1981. - T.257, N4. - P.799-803.
[4] Gorodetsky V.V., Yarmolyk I.I. About the summation of the formal Fourier-Hermite series by the Abel- Poisson method // Доп. НАН України. 1994. - N6. - С.20-26.
[5] Gorodetsky V.V., Drin I.I. Formal Fourier-Laguerre series and generalized functions of infinite order // Integral transformations and their application to boundary value problems: 3b. scientific pr. - Kyiv: Institute of Mathematics of the NAS of Ukraine, 1995, - Issue 9. - P.174-180.
[6] Gorbachuk V.I. On Fourier series of periodic ultradistributions // Ukr. mat. journal. - 1982. - V.34, N2. - P.144-150.
[7] Myronyk V.I. Periodic Cauchy problem for one class of evolutionary equations // Scientific Bulletin of Chernivtsi University: Issue 314-315. Mathematics. - Chernivtsi: Ruta, 2006. - P.134-142.
[8] Stein I., Weiss G. Introduction to harmonic analysis on Euclidean spaces. - M.: Mir, 1974. - 322 p.
- ACS Style
- Myronyk, V.; Kolisnyk, R. The localization property of solutions to the Cauchy problem of one class of pseudodifferential equations. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Myronyk V, Kolisnyk R. The localization property of solutions to the Cauchy problem of one class of pseudodifferential equations. Bukovinian Mathematical Journal. 2018; 1(336).
- Chicago/Turabian Style
- Vadym Myronyk, Ruslana Kolisnyk. 2018. "The localization property of solutions to the Cauchy problem of one class of pseudodifferential equations". Bukovinian Mathematical Journal. 1 no. 336.