Asymptotic behavior of the constants in Khinchin's inequality for independent random variables with zero average of distribution is investigated.
[1] Lindenstrauss J., Tzafriri L. Classical Banach Spaces I. - Berlin-Heidelberg-New York: Springer- Verlag, 1977. - 188 p.
[2] Khintchine A. Uber dyadishe Bruche // Math.Z. - 1923. - 18. - P.109-116.
[3] Dor L.E., Starbird T. Projections of $L_p$ onto subspaces spanned by independent random variables // Composito Math. - 1979. - 39 , N.2. - P.141-175.
[4] Skorokhod A.V. Elements of probability theory and random processes. - Kyiv: Higher School, 1975.
[5] Burkholder D.L. Boundary value problems and sharp inequalities for martingale transforms // Ann. Probab. - 1984. - 1 , N.1. - P.647-702.
[6] Matsak I.K., Plichko A.N. Khinchin's inequality for $k$-fold products of independent random variables // Mathematical notes. - 1988. - 44, № 3. - P.378-384.
- ACS Style
- Mykhaylyuk, V.; Holomenyuk , V.A. Refinement of the estimate in Khinchin's inequality for independent random variables. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Mykhaylyuk V, Holomenyuk VA. Refinement of the estimate in Khinchin's inequality for independent random variables. Bukovinian Mathematical Journal. 2018; 1(336).
- Chicago/Turabian Style
- Volodymyr Mykhaylyuk, V. A. Holomenyuk . 2018. "Refinement of the estimate in Khinchin's inequality for independent random variables". Bukovinian Mathematical Journal. 1 no. 336.