Перейти до основного вмісту
On the solvability of a mixed problem for a third-order nonlinear evolutionary equation
Panat Oksana Tarasivna 1
1 Ivan Franko National University of Lviv, Ivan Franko National University of Lviv, 79000, Ukraine
Keywords: the solvability of a mixed problem, a third-order nonlinear evolutionary equation
Abstract

It is investigated the mixed problem for a nonlinear evolution equation of the third order in an unbounded domain with respect to spatial variables. In generalized Sobolev spaces some conditions for existence of solution of such problem are obtained.

References

[1]  James M. Greenberg, Richard C. Mac Camy and Victor J. Mizel. The equation $σ' (u_x)u_{tt} + λu_{xtx} = p_0u_{tt}$  // Journal of Mathematics and Mechanics - 1968. - Vol. 17. - No 7. - P. 707-728.

[2] Constantine M. Dafermos. The mixed initial- boundary value problem for the equations of nonlinear one-dimensional viscoelasticity // Journal of Differential Equations - 1969. - Vol. 6. - P. 71-86.

[3] Graham Andrews. On the existence of solution to the equation $u_{tt} = u_{xxt} + σ(u_x)_x$ // Journal of Differential Equations - 1980. - Vol. 35. - P. 200-231.

[4] Dang Dinh Hai. On a strongly damped quasilinear wave equation // Demonstratio mathematica - 1986. - Vol. XIX, No 2. - P. 327-340.

[5] Glazatov S. N. Some problems for nonlinear equations of the third order. - Novosibirsk, 1992. Preface № 7.

[6] Bugriy O., Domanska G., Protsakh N. Mixed problem for a nonlinear third-order equation in generalized Sobolev spaces // Visnyk Lviv. Univ. Series Mech.-Mat. - Issue 64, - 2005. P. 44-61.

[7]  Stuart S. Antman and Thomas I. Seidman. Quasilinear hyperbolic-parabolic equation of one- dimensional viscoelasticity // Journal of Differential Equations - 1996. - Vol. 124. - P. 132-185.

[8] Mitsuhiro Nakao and Hiroko Okochi. Antiperiodic solution for $u_{tt} - (σ(u_x))_x - U_{xxt} = f(x,t)$  // Journal of Mathematical Analysis and Applications - 1996. - Vol. 197. - P. 796-809.

[9] Mitsuhiro Nakao. Existence of an anti-periodic solution for the quasilinear wave equation with viscosity// Journal of Mathematical Analysis and Applications - 1996. - Vol. 204. - P. 754-764.

[10] Fengxin Chen, Boling Guo and Ping Wang. Long time behavior of strongly damped nonlinear wave equations // Journal of Differential Equations - 1998. - Vol. 147. - P. 231-1241.

[11] João − Paulo Dias. On the existence of a global strong radial symmetric solution for a third-order nonlinear evolution equation in two space dimensions// Journal of Mathematical Pures Applications - 2001. - Vol. 80. - No. 5. - P. 535- 546.

[12] Zhijian Yang and Guowang Chen. Global existence of solutions for quasi-linear wave equations with viscous damping// Journal of Mathematical Analysis and Applications - 2003. - Vol. 285. - P. 604-618.

[13] Zhijian Yang. Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms // Journal of Mathematical Analysis and Applications - 2004. - Vol. 300. - P. 218-243.

[14] Gaevsky H., Greger K., Zacharias K. Nonlinear operator equations and operator differential equations. - M., 1978.

[15] Kováčik O., Rákosnik J. On spaces $L^{p(x)}$ and $W^{1, p(x)}$ // Czechoslovak Math. J. - 1991. - Vol. 41 (116).- P. 592-618.

[16] Coddington E. A., Levinson N. Theory of ordinary differential equations. - M., 1958.

[17] Lions J.-L. Some methods for solving nonlinear boundary value problems. - M., 2002.

Cite
ACS Style
Panat , O.T. On the solvability of a mixed problem for a third-order nonlinear evolutionary equation. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Panat OT. On the solvability of a mixed problem for a third-order nonlinear evolutionary equation. Bukovinian Mathematical Journal. 2018; 1(336).
Chicago/Turabian Style
Oksana Tarasivna Panat . 2018. "On the solvability of a mixed problem for a third-order nonlinear evolutionary equation". Bukovinian Mathematical Journal. 1 no. 336.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings