It is proved that a metrizable space Z in the results of V.V. Mykhaylyuk [4], J.P.R. Christensen [5] and A. Bouziad [6] can be replaced by a Hausdorff strongly $σ$-metrizable or super-$σ$-metrizable one.
[1] Debs G. Points de continuité d'une function séparément continue // Proc. Amer. Math. Soc. - 1986. -97 , N1. - P.167-176.
[2] Maslyuchenko V.K. Differently continuous mappings and Käthe spaces: Dissertation ... Doctor of Physical and Mathematical Sciences. Chernivtsi, 1999. - 345 p.
[3] Saint Raymond J. Jeux topologiques et espaces de Namioka // Proc. Amer. Math. Soc. - 1983. - 87 , N3. - P.499-504.
[4] V.V.Mykhaylyuk. The Namioka property of KC- functions and Kempisty spaces // Topology and its Applications. - 2006. - 153 . - P.2455-2461.
[5] Christensen J.P.R. Joint continuity of separately continuous functions // Proc. Amer. Math. Soc. - 1981. - 82 , N3. - P.455-461.
[6] A.Bouziad. Notes sur la Propriete de Namioka // Transactions of the American Mathematical Society. - 1994. - 344 , № 2. - P.873-883.
[7] Maslyuchenko V.K., Mykhailiuk V.V., Shyshyna O.I. Cumulative continuity of horizontally quasicontinuous mappings with values in $σ$-metrization spaces // Mat. Methods and Phys. Mech. Fields. - 2002. - 45, N1. - P.42-46.
[8] Maslyuchenko V.K., Filipchuk O.I. Point discontinuity of $K_hK$-functions with values in $σ$-metrization spaces // Scientific Bulletin of Chernivtsi University. Issue 191-192. Mathematics. Chernivtsi: Ruta, 2004. - P.103-106.
[9] Kozhukar O.G., Maslyuchenko V.K. Around Debs' theorems on multivalued mappings / / Scientific Bulletin of Chernivtsi University. Issue 191-192. Mathematics. Chernivtsi: Ruta, 2004.- P. 61-66.
[10] Engelking R. Topology. Vol. 1. - M.: Mir, 1966. - 594p.
[11] Breckenridge J.C., Nishiura T. Partial continuity, quasicontinuity and Baire spaces // Bull. Inst. Acad. Sinica. - 1976. - 4 , N2. - P.191-203.
- ACS Style
- Filipchuk, O.I. On the question of the cumulative continuity of differently continuous mappings and their analogs with values in strongly $σ$-metrizable spaces. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Filipchuk OI. On the question of the cumulative continuity of differently continuous mappings and their analogs with values in strongly $σ$-metrizable spaces. Bukovinian Mathematical Journal. 2018; 1(336).
- Chicago/Turabian Style
- Olga Igorivna Filipchuk. 2018. "On the question of the cumulative continuity of differently continuous mappings and their analogs with values in strongly $σ$-metrizable spaces". Bukovinian Mathematical Journal. 1 no. 336.