The article is devoted to the study of groups generated by automata with three states over an alphabet with two letters. It is shown that this class of groups contains no more than 124 pairwise non-isomorphic groups, does not contain infinite periodic groups, and contains a unique free non-abelian group. All finite and abelian groups in this class are described. Information about short relations, the size of factors, the initial values of the growth function, and the histogram of the spectral density of the Schreier graph of 9th level for 11 chosen groups is presented. In some cases we give a picture of the limit space.
[1] Aleshin S.V. Finite automata and Burnside's problem on periodic groups // Mat. notes. - 1972. - 11. - P. 319-328.
[2] Aleshin S.V. A free group of finite automata // Vestnik Moskov. Univ. Ser. I Mat. Mekh. - 1983. - 4 . - P. 12-14.
[3] Bartholdi L., Grigorchuk R.I. On the spectrum of Hecke type operators related to some fractal groups // Tr. Mat. Inst. Steklova (Din. Sist., Avtom. i Beskon. Gruppy). - 2000. - 231 . - P. 5-45.
[4] Bartholdi L., Grigorchuk R.I., Nekrashevych V.V. From fractal groups to fractal sets // Fractals in Graz 2001, Trends Math., Birkhäuser, Basel. - 2003. - P. 25-118.
[5] Bartholdi L., Grigorchuk R.I., Šuniḱ Z. Branch groups // Handbook of algebra, North-Holland, Amsterdam. - 2003. - 3 . - P. 989-1112.
[6] Bartholdi L., Kaimanovich V., Nekrashevych V., Virág B. Amenability of automata groups // preprint, 2005.
[7] Bondarenko I., Nekrashevych V. Growth of Schreier graphs of groups generated by bounded automata // in preparation.
[8] Bartholdi L., Nekrashevych V. Thurston equivalence of topological polynomials // Acta Math. - 2006. - 197 , N1. - P. 1-51.
[9] Bartholdi L., Šuniḱ Z. Some solvable automaton groups // Contemp. Math. Amer. Math. Soc., Providence, RI. - 2006. - 394 . - P. 11-29.
[10] Day M.M. Amenable semigroups // Illinois J. Math. - 1957. - 1 . - P. 509-544.
[11] Erschler A. Boundary behavior for groups of subexponential growth // Ann. of Math. - 2004. - 160 , N3. - P. 1183-1210.
[12] Fabrykowski J., Gupta N. On groups with subexponential growth functions II // J. Indian Math. Soc. (N.S.) - 1991. - 56 , N1-4. - P. 217-228.
[13] Grigorchuk R.I., Linnell P., Schick T., Zuk A. On a question of Atiyah // C. R. Acad. Sci. Paris Sér. I Math. - 2000. - 331 , N9. P. 663-668.
[14] Glushkov V.M. Abstract theory of automata // Uspekhi matem. sciences. - 1961. - 16, N5. - P. 3-62.
[15] Grigorchuk R.I., Nekrashevich V.V., Sushchansky V.I. Automata, dynamic systems and groups / / Proceedings of the Steklov Mathematical Institute. - 2000. - 231. - P. 134-214.
[16] Greenleaf F.P. Invariant means on topological groups and their applications // Van Nostrand Mathematical Studies, No. 16. Van Nostrand Reinhold Co. New York, 1969.
[17] Grigorchuk R.I. On Burnside's problem on periodic groups // Functional analysis and applications. - 1980.
[18] Grigorchuk R.I. Degrees of growth of finitely generated groups and the theory of invariant means // Izv. Akad. Nauk SSSR Ser. Mat. - 1984. - 48 , N5. - P. 939-985.
[19] Grigorchuk R.I. Just infinite branch groups // In Markus P. F. du Sautoy Dan Segal and Aner Shalev, editors, New horizons in pro-p groups , Birkhäuser Boston, Boston, MA. - 2000. - P. 121-179.
[20] Gupta N., Sidki S. Some infinite $p$-groups // Algebra i Logika. - 1983. - 22 , N5. - P. 584-589.
[21] Gupta N.D., Sidki S. On the Burnside problem for periodic groups // Math. Z. - 1983. - 182 , N3. - P. 385-388.
[22] Grigorchuk R.I., Šuniḱ Z. Asymptotic aspects of Schreier graphs and Hanoi Towers groups // C. R. Math. Acad. Sci. Paris. - 2006. - 342 , N8. - P. 545-550.
[23] Grigorchuk R.I., Savchuk D., Šunić Z. The spectral problem, substitutions and iterated monodromy // to appear.
[24] Grigorchuk R.I., Żuk A. The lamplighter group as a group generated by a 2-state automaton, and its spectrum // Geom. Dedicata. - 2001. - 87 , N1-3. - P. 209-244.
[25] Hořejš J. Transformations defined by finite automata // Problemy Kibernet. - 1963. - 9 . - P. 23-26.
[26] Kaloujnine L. Sur le $p$-groupes de sylow du groupe symetriques de degre $p^m$ // C.R. Acad. Sci. Paris - 1945. - 221. - P. 222-224.
[27] Kaloujnine L. Sur le $p$-groupes de sylow des groupes symetriques finis // Ann. Sci. Ecole Norm. Sup. - 1948. - 65 . - P. 239-279.
[28] Milnor J.W. Problem 5603 // Amer. Mat. Monthly. - 1968. - 75 . - P. 685-686.
[29] Nekrashevych V.V. Self-similar groups // volume 117 of Mathematical Surveys and Monographs , American Mathematical Society, Providence, RI, 2005.
[30] Reznikov I.I., Sushchansky V.I. Two-state Mealy automata of intermediate growth over a two-letter alphabet // Mat. Zametki. - 2002. - 72 , N1. - P. 102-117.
[31] Sidki S. Finite automata of polynomial growth do not generate a free group // Geom. Dedicata. - 2004. - 108 . - P. 193-204.
[32] Sushchansky V.I. Periodic $p$-groups of permutations and the unrestricted Burnside problem // Dokl. Akad. Nauk SSSR. - 1979. - 247 , N3. - P. 557-561.
[33] John von Neumann. Zur allgemeinen Theorie des Masses // Fund. Math. - 1929. - 13 . - P. 73-116, 333.
[34] Vorobets M., Vorobets Y. On a free group of transformations defined by an automaton // to appear in Geometriae Dedicata, 2007
- ACS Style
- Bondarenko , Y.V.; Grigorchuk, R.I.; Kravchenko , R.V.; Muntyan , E.V.; ; Savchuk , D.M.; Shunich , Z. On the classification of groups generated by three-state automata over a two-letter alphabet, and on some questions related to these groups. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Bondarenko YV, Grigorchuk RI, Kravchenko RV, Muntyan EV, , Savchuk DM, Shunich Z. On the classification of groups generated by three-state automata over a two-letter alphabet, and on some questions related to these groups. Bukovinian Mathematical Journal. 2018; 1(336).
- Chicago/Turabian Style
- Yevhen Volodymyrovych Bondarenko , Rostyslav Ivanovych Grigorchuk, R. V. Kravchenko , E. V. Muntyan , , D. M. Savchuk , Z. Shunich . 2018. "On the classification of groups generated by three-state automata over a two-letter alphabet, and on some questions related to these groups". Bukovinian Mathematical Journal. 1 no. 336.