Let $X$ be a Baire space, $Y$ be a second countable space and $Z$ be a metrizable separable space. We obtain that a function $f: X × Y → Z$ is joint quasi-continuous if and only if it is horizontally quasi-continuous and quasi-continuous with respect to the second variable when the first variable runs over some residual set.
[1] Kempisty S. Sur les fuctions quasicontinues // Fund. Math. - 1932. - 19. - P. 184 - 197.
[2] Martin N.F.G.Quasi-continuous functions on product spaces // Duce Math. J. - 1961. - P. 39 - 44.
[3] Breckenridge J.C., Nishiura T. Partial continuity, quasicontinuity and Baire spaces // Bull. Math. Acad. Sinica. - 1976. - 4, № 2. - P. 191 - 203.
[4] Neubrunn T. Quasi-continuity // Real Anal. Exch. - 1988. -1989. - 14, №3. - P. 259 - 306.
[5] Maslyuchenko V.K. On cut and cumulative modifications of continuity // Mathematical Studies. - 2006. - T. 25, № 2. - P. 213 - 218.
[6] Maslyuchenko V.K., Mykhailiuk V.V., Nesterenko V.V. Symmetric quasicontinuity of cumulative quasicontinuous functions // Mathematical Studies. - 1999. - T. 11, № 2. - P. 204 - 208.
- ACS Style
- Nesterenko, V.V. On one characterization of aggregate quasicontinuity. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Nesterenko VV. On one characterization of aggregate quasicontinuity. Bukovinian Mathematical Journal. 2018; 1(336).
- Chicago/Turabian Style
- Vasyl Volodymyrovych Nesterenko. 2018. "On one characterization of aggregate quasicontinuity". Bukovinian Mathematical Journal. 1 no. 336.