The correct solvability of two-pointed problem for the parabolic pseudodifferential equation established in the space of generalized functions of distribution types.
[1] Shubin M.A. Pseudodifferential operators and spectral theory. - M.: Nauka, 1978. - 280 p.
[2] Taylor M. Pseudodifferential operators. - M.: Mir, 1985. - 472 p.
[3] Fractals in Physics: Proceedings of the VI International Symposium on Fractals in Physics (ICTP, Trieste, Italy, July 9-12, 1985). - M.: Mir, 1988. - 672 p.
[4] Feder E. Fractals. - M.: Mir, 1991. - 254 p.
[5] Turbin A.F., Pratsevity N.V. Fractal sets, functions, distributions. - Kyiv: Naukova Dumka, 1992. - 205 p.
[6] Kochubey A.N. The Cauchy problem for fractional order evolution equations // Differential equations. - 1989. - V. 25, N 8. - P. 1359-1368.
[7] Eidelman S.D., Drin' Ya.M. Necessary and sufficient conditions for stabilization of solutions of the Cauchy problem for parabolic pseudodifferential equations // Approximate methods of mathematical analysis. Kyiv. - 1974. - P. 60 - 69.
[8] Fedoryuk M.V. Asymptotics of the Green's function of a pseudodifferential parabolic equation // Differential equations. - 1978. - V. 14, N 7. - P. 1296-1301.
[9] Drin Ya.M. Study of a class of parabolic pseudodifferential operators in spaces of Hölder functions // Reports of the Academy of Sciences of the Ukrainian SSR. Ser. A. - 1974. - N 1. - P. 19 - 21.
[10] Drin Ya.M. Fundamental solution of the Cauchy problem for one class of parabolic pseudodifferential equations // Reports of the Academy of Sciences of the Ukrainian SSR. Series. A. - 1977. - N 3. - P. 198-203.
[11] Kochubey A.N. Parabolic pseudodifferential equations, hypersingular integrals and Markov processes // Izvestiya AN SSSR. Ser. mat. - 1988. - V. 52, N 5. - P. 909-934.
[12] Kochubey A.N. Singular parabolic equations and Markov processes // Izvestiya AN SS-SR. Ser. mat. - 1984. - V. 48, N 1. - P. 77-103.
[13] Samko S.G., Kilbas A.A., Marichev O.I. Integrals and derivatives of fractional order and some of their applications. - Minsk: Science and Technology, 1987. - 688 p.
[14] Drin R.Ya. Investigation of qualitative properties of solutions of parabolic pseudodifferential equations with non-smooth symbols: Diss. ... candidate of physical and mathematical sciences. - Lviv, 1997. - 137 p.
[15] V.V. Gorodetsky. Boundary properties of smooth-in-layer solutions of parabolic-type equations. Chernivtsi: Ruta, 1998. - 225 p.
[16] Gelfand I.M., Shilov G.E. Spaces of basic and generalized functions. - M.: Fizmatgiz, 1958. - 307 p.
[17] Kirillov A.A., Gvishiani A.D. Theorems and problems of functional analysis. - M.: Nauka, 1979. - 381 p.
[18] Gorbachuk V.I., Gorbachuk M.L. Boundary values of solutions of differential equations. - Kyiv: Nauk. dumka, 1984. - 283 p.
[19] Gorodetsky V.V. Cauchy problem for evolutionary equations of infinite order. - Chernivtsi: Ruta, 2005. - 291 p.
[20] Drin M.M., Drin Ya.M. Representation of solutions of nonlocal problems for parabolic pseudodifferential equations with nonsmooth symbols // Spectral and Evolution Problems: Proceedings of the Sixteenth Crimean Autumn Mathematical School. - Symposium. Simferopol. - Vol. 16. - 2006. - P. 33 - 37.
- ACS Style
- Gorodetskii, V.; Drin , Y.M. Dirichlet problem for one class of evolutionary equations. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Gorodetskii V, Drin YM. Dirichlet problem for one class of evolutionary equations. Bukovinian Mathematical Journal. 2018; 1(336).
- Chicago/Turabian Style
- Vasyl Gorodetskii, Yaroslav Mykhailovych Drin . 2018. "Dirichlet problem for one class of evolutionary equations". Bukovinian Mathematical Journal. 1 no. 336.