Перейти до основного вмісту
Cauchy problem for the Korteweg-de Vries equation with variable coefficients and small variance
Samoilenko Yulia Ivanivna 1
1 Taras Shevchenko National University of Kyiv, Kyiv, 01033, Ukraine
Keywords: Cauchy problem, the Korteweg-de Vries equation
Abstract

Algorithm of constructing asymptotic solutions to Cauchy problem for singular perturbed Korteweg-de Vries equation with varying coefficients is proposed. Theorem on estimation of its precision is proved.

References

[1] Korteweg D.J., de Vries G. On the change in form of long waves advancing in a rectangular canal and a new type of long stationary waves // Philos. Mag. - 1895. - N. 39. - P. 422 - 433.

[2] Samoilenko V.G., Samoilenko Yu.I. Translation wave and mathematical theory of solitons // Mathematical Bulletin of the National Institute of Science. - 2006. - Vol. 3. - P. 126-148.

[3] Gardner C.S., Green J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg-de Vries equation // Phys. Rev. Lett. - 1967. - Vol. 19. - P. 1095.

[4] Lax P.D. Integrals of nonlinear equations of evolution and solitary waves // Communications Pure Applied Mathematics. - 1968. - V. 21, N. 15. - P. 467 - 490.

[5] Lax P.D. Periodic solutions of the Korteweg-de Vries equation // Lecture in Appl. Mathem. - 1974. - V. 15. - P. 467 - 490.

[6] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevsky L.P. Soliton theory: the inverse problem method. - M.: Nauka, 1980. - 320 p.

[7] Samoylenko V.G. Inverse periodic problem for nonlinear equations of the Langmuir chain // Ukr. mat. zhurn. - 1982. - V. 34, N. 3. - P. 322-327.

[8] Maslov V.P., Omelyanov G.A. Asymptotic soliton-like solutions of equations with small dispersion // Uspekhi matem. nauk. - 1981. - Issue. 36 (219), N. 2. - P. 63-124.

[9] Maslov V.P., Omel'yanov G.A. Geometric asymptotics for PDE. I. - Provedence: American Math. Society. - 2001. - 243 p.

[10] Samoylenko Yul. Asymptotical expansions for one-phase soliton-type solution to perturbed Kortewegde Vries equation // Proceedings of the Fifth International Conference "Symmetry in Nonlinear Mathematical Physics". - K.: Institute of Mathematics. - 2004. - T. 3. - P. 1435 - 1441.

[11] Samoilenko V.G., Samoilenko Y.I. Asymptotic expansions for single-phase soliton-like solutions of the Korteweg-de Vries equation with variable coefficients / / Ukr. mat. zhurn. - 2005. - T. 58, N. 1. - P. 111 - 124.

[12] Samoilenko V.Hr., Samoylenko Yu.I. Asymptotical expansion of solution to Cauchy problem to Korteweg-de Vries equation with varying coeficients and a small parameter // Communications of CERMCS International Conference of Young Scientists. - Chisinau. - 2006. - P.186-192.

[13] Samoilenko V.G., Samoilenko Yu.I. Asymptotic expansions for single-phase soliton-like solutions of the Cauchy problem for the Korteveg-de Vries equation with variable coefficients // Ukr. Mat. Zh. - 2007. - Vol. 59, № 1. - P. 122 - 132.

[14] Faminsky A.V. The Cauchy problem for the Korteweg-de Vries equation and its generalizations // Proceedings of the I.G.Petrovsky Seminar. - 1988. - Issue 13. - P. 56 - 105.

Cite
ACS Style
Samoilenko , Y.I. Cauchy problem for the Korteweg-de Vries equation with variable coefficients and small variance. Bukovinian Mathematical Journal. 2018, 1
AMA Style
Samoilenko YI. Cauchy problem for the Korteweg-de Vries equation with variable coefficients and small variance. Bukovinian Mathematical Journal. 2018; 1(336).
Chicago/Turabian Style
Yulia Ivanivna Samoilenko . 2018. "Cauchy problem for the Korteweg-de Vries equation with variable coefficients and small variance". Bukovinian Mathematical Journal. 1 no. 336.
Export
We use own, third-party cookies, and localStorage files to analyze web traffic and page activities. Privacy Policy Settings