It is shown that using Bernstein polynoms can one prove the classical Lebesgue and Baire theorems on separately continuous functions. It is obtained that a compact $Y$ is metrizable iff identical mapping $I: C_p(Y) → C_u(Y)$ belongs to the first Baire class $B_1(C_p(Y), C_u(Y))$ or for every topological spaces $X$ the inclusion $C(X, C_p(Y)) ⊆ B_1(X, C_u(Y))$ holds.
[1] Talagrand M. Espaces de Baire et espaces de Namioka // Math. Ann. - 1985. - 270 , № 2. - P.159-164.
[2] Piotrowski Z. Separate and joint continuity // Real Anal. Exch. - 1985-86. - 11 , № 2. - P.293-322.
[3] Piotrowski Z. Separate and joint continuity. II // Real Anal. Exch. - 1989-1990. - 15 , № 1. - P.248-256.
[4] Maslyuchenko V.K., Mykhailyuk O.V., Sobchuk O.V. Research on distinctly continuous mappings // Proceedings of the International Mathematical Conference dedicated to the memory of Hans Hahn. - Chernivtsi: Ruta, 1995. - p. 192-246.
[5] Maslyuchenko V. Connection between separate and joint properties of functions of several variables // International Conf. on Funct. Analysis and its Appl. Dedic. to the 110th ann. of Stefan Banach. May 28-31, 2002, Lviv. - P.135-136.
[6] Maslyuchenko V.K., Plichko A.M. Some open problems on functional analysis and function theory // Extracta Math. - 2005. - 20 , № 1. - P.51-70.
[7] Mykhailiuk V.V., Sobchuk O.V. Functions with a diagonal of a finite class / / All-Ukrainian scientific conference dedicated to the 70th anniversary of the birth of prof. P.S. Kazymirsky (October 5-7, 1995). Theses of the additional Ch.I. - Lviv, 1995. - P.82.
[8] Mykhailiuk V.V., Sobchuk O.V. Functions with a diagonal of a finite Beer class / / Mat. Studii. - 2000. - 14, № 1. - P.23-28.
[9] Romanyuk A.S. Bilinear approximations of classes of periodic functions of many variables // Int. Mat. Conference "Mathematical Analysis and Differential Equations and Their Applications". , September 18 - 23, 2006, Uzhgorod. Abstracts of reports. - P.89-90.
[10] Fichtenholz G.M. Fundamentals of Mathematical Analysis. - St. Petersburg - Moscow - Krasnodar: Lan, 2005. - 464 p.
[11] Maslyuchenko V.K., Mykhailiuk V.V., Nesterenko V.V. On the operator of transition to the pointwise boundary // Nauk. visn. Chernivtsi. un-tu. Vol. 288. Mathematics. - Chernivtsi: Ruta, 2006. - P.77-79.
[12] Bernstein S.N. Proof of Weierstrass's theorem based on probability theory (1912). Collected Works, Vol. 1. - M.: Publ. of the USSR-SR Academy of Sciences, 1951. - 105 p.
[13] Maslyuchenko V.K. Differently continuous mappings and Käthe spaces // Dissertation.... Doctor of Physical and Mathematical Sciences - Chernivtsi, 1999. - 345 p.
[14] Baire R. Sur les fonctions de variables reélles // Ann. Mat. Pura Appl., ser.3. - 1899. - 3 . - P.1-123.
[15] Lebesque H. Sur l'approximation des fonctions // Bull. Sci. Math. - 1898. - 22 . - P.278-287.
[16] Baire R. Sur les fonctions discontinues développables enséries de fonctions continues // C.R. Acad. Sc. Paris. Séc. F. - 1898. - 126 . - P.884-887.
[17] Hahn H. Reelle Funktionen. 1. Teil. Punktfunktionen. - Leipzig: Academische Verlagsgesellschaft M.B.H., 1932. - 416 S.
[18] Kuratovsky K. Topology. V.1. - M.: Mir, 1966. - 594 p.
[19] Karlova O.O., Kutsak S.M., Maslyuchenko V.K. Generalization of Beer's theorem to the case of non-metrizable value space // Nauk. visn. Cherniv. un-tu. Vol. 228. Mathematics. - Chernivtsi: Ruta, 2004. - P.11-14.
[20] Tsuji M. On Baire's Theorem concerning a function $f(x, y)$, which is continuous with respect to each variable $x$ and $y$ // J. Math. Soc. Japan. - 1951. - 2 , № 3-4. - P.210-212.
[21] Alexiewicz A., Orlicz W. Sur la continuité et la classification des Baire de fonctions abstraites // Fund. Math. - 1948. - 35. - P.105-126.
[22] Saint-Raymond J. Fonctions séparément continues sur le produit de deux espaces polonais // Séminaire Choquet. Initiation à l'analyse-$15^e$ année, 1975-1976. - Communication n2 - 3 p.
[23] Vera G. Baire mesurability of separately continuous functions // Quart. J. Math. Oxford (2). - 1988. - 39 . - P.109-116.
[24] Arkhangelsky A.V. Topological spaces of functions. - M.: Izd-vo Mosk. there, 1989. - 222 p.
[25] Maslyuchenko V.K. The first types of topological vector spaces. - Chernivtsi: Ruta, 2002. - 72 p.
[26] Engelking R. General topology. - M.: Mir, 1986. - 752 p.
[27] Debs G. Points de continuité d'une function séparément continue // Proc. Amer. Math. Soc. - 1986. - 97 , N1. - P.167-176.
[28] Calbrix J., Troallic J.P. Applications séparément continues // C.R. Acad. Sc. Paris. Séc. A. - 1979. - 288 . - P.647-648.
[29] Maslyuchenko V.K. Dini's problem and uniform continuity / / Nauk. visn. Cherniv. un-tu. Vol. 46. Mathematics. - Chernivtsi: ChDU, 1999. - P.80-87.
[30] Bernstein S.N. On the inverse problem of the theory of best approximation of continuous functions (1938) // Collected Works, Vol. 2. - M.: Publishing house of the USSR Academy of Sciences, 1954. - P. 292-294.
[31] Nesterenko O.N. Inverse problem of approximation and estimation of norms of entire functions of exponential type and polynomials. Dissertation...candidate of physics and mathematics. - Kyiv, 2006. - 148 p.
[32] Hryhorchuk I.F. Estimates of functions of the $L$-basis and one generalization of Bernstein polynomials / / Ukr. Mat. Journal - 1965. - 17, № 1. - P.18-25.
- ACS Style
- Vlasyuk , G.; Maslyuchenko, V.K. Bernstein polynomials and differently continuous functions. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Vlasyuk G, Maslyuchenko VK. Bernstein polynomials and differently continuous functions. Bukovinian Mathematical Journal. 2018; 1(336).
- Chicago/Turabian Style
- G. Vlasyuk , Volodymyr Kyrylovych Maslyuchenko. 2018. "Bernstein polynomials and differently continuous functions". Bukovinian Mathematical Journal. 1 no. 336.