Theorems on a resolvability in special weight Lp" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">of parabolic equations with growing coefficients on a variable -spaces of the Cauchy problem for one class x∈ℝn" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;"> as x→∞" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">operator on a variable and with Bessel y∈ℝ" role="presentation" style="box-sizing: border-box; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 16.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;"> are proved.
- ACS Style
- Balabushenko, T.M.; Ivasyshen, S.D.; Lavrenchuk, V.P.; Melnychuk, L.M. Cauchy problem for some parabolic equations with Bessel operator and increasing coefficients. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Balabushenko TM, Ivasyshen SD, Lavrenchuk VP, Melnychuk LM. Cauchy problem for some parabolic equations with Bessel operator and increasing coefficients. Bukovinian Mathematical Journal. 2018; 1(314).
- Chicago/Turabian Style
- Tonya Mykhailivna Balabushenko, Stepan Dmytrovych Ivasyshen, Volodymyr Petrovych Lavrenchuk, Liliia Mykhailivna Melnychuk. 2018. "Cauchy problem for some parabolic equations with Bessel operator and increasing coefficients". Bukovinian Mathematical Journal. 1 no. 314.