It is proved that the set of $α$-continuity points of mapping $f: X → Y$ is a countable intersection of $α$-open sets.
[1] Piotrowski Z. A survey of results concerning generalized continuity on topological spaces // Acta Math. Univ. Comen. - 1987-1988. - 52-53. - P.91-110.
[2] Borśik J. Points of continuity, quasicontinuity and cliquishness // Rend. Ist. Mat. Univ. Trieste. - 1994. - 26 , № 1-2. - P.5-20.
[3] Ewert J., Lipinski J. On points of continuity, quasi-continuity and cliquishness of real functions / Real. Anal. Exech. - 1983. - 8. - P.473-478.
[4] Vitrenko O.V., Maslyuchenko V.K. On distinctly almost continuous functions / / Mat. Studii. - 1996. - 6. - P.113-118.
[5] Maslyuchenko V.K., Nesterenko V.V. On the set of almost continuous points and other weakenings of continuity // Scientific Bulletin of Chernivtsi University: 3b. scientific pr. - Issue 191-192. Mathematics. - Chernivtsi: Ruta, 2004. - P.100-102.
- ACS Style
- Nesterenko, V.V. The set of points of $α$ -continuity. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Nesterenko VV. The set of points of $α$ -continuity. Bukovinian Mathematical Journal. 2018; 1(269).
- Chicago/Turabian Style
- Vasyl Volodymyrovych Nesterenko. 2018. "The set of points of $α$ -continuity". Bukovinian Mathematical Journal. 1 no. 269.