The solvability in the generalized Sobolev spaces is proved for mixed problem for nonlinear equations of the third order.
[1] Gaevsky H., Greger K., Zacharias K. Nonlinear operator equations and operator differential equations. - M, 1978.
[2] Kováčik O., Rákosnik J. On spaces $L^{p(x)}$ and $W^{l, p(x)}$ // Czechosl. Math. J. - 1991. - Vol. 41. - N 4. - P. 592-618.
[3] Lions J.-L. Some methods for solving nonlinear boundary value problems. - M., 1972.
[4] Coddington E. A., Levinson N. Theory of ordinary differential equations. - M., 1958.
[5] Bugriy O., Lavreniuk S. Mixed problem for a parabolic equation that generalizes the polytropic filtration equation / / Visnyk Lviv. un-tu. Ser. mech.-mat. - 2000. - Issue 56. - P. 33-43.
[6] Lavreniuk S. P., Protsakh N. P. Mixed problem for one parabolic equation / / Mat. methods and physics - mech. fields. - 2000. - T. 43, N 3. - P. 56-63.
- ACS Style
- Domanska , G.P.; Lavreniuk, S.P.; Protsakh , N.P. Problem for a nonlinear third-order hyperbolic equation. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Domanska GP, Lavreniuk SP, Protsakh NP. Problem for a nonlinear third-order hyperbolic equation. Bukovinian Mathematical Journal. 2018; 1(269).
- Chicago/Turabian Style
- Galyna Petrivna Domanska , Serhiy Pavlovych Lavreniuk, Nataliya Petrivna Protsakh . 2018. "Problem for a nonlinear third-order hyperbolic equation". Bukovinian Mathematical Journal. 1 no. 269.