It is shown that every perfect $G_δ$ subset of the real line can be parted onto $n$ homeomorphic parts; every open subset of $\mathbb{R}^m$ can be parted onto n homeomorphic parts provided $n ≥ 2m + 2$; no compact convex subset of $\mathbb{R}^m$ can be parted onto two congruent parts.
[1] Engelking R. General topology. - Monografie Matematyczne, 60 . - Warsaw: Polish Scientific Publ., 1977.
[2] Gulchak V.V., Maslyuchenko V.K. Impossibility of dividing a segment into $n$ similar parts / / Nauk. visn. Chernivtsi. un-tu., Vol. 134. Mathematics - Chernivtsi: Ruta. - P.42-44.
[3] Hadwiger G., Debrunner G. Combinatorial Geometry of the Plane. - M.: Nauka, 1965.
[4] Kechris A. Classical Descriptive Set Theory. - Springer, 1995.
[5] Maslyuchenko V.K., Mykhailiuk V.V., Popov M.M. Dividing a segment into identical parts // Nauk. visn. Chernivtsi. un-tu., Vol. 46. Mathematics - Chernivtsi: Ruta. - P.88-94.
[6] Van der Waerden B. L. Aufgabe 51. // Elemente Math., 4 , (1949) - P.18.
[7] van Mill J. The Infinite-Dimensional Topology of Function Spaces. - North-Holland, Amsterdam, 2001.
[8] van Mill J. Topological Characterizations of Separable Metrizable Zero-Dimensional Spaces // Hart K.P., Nagata J.I. and Vaughan J.E. (eds.) The encyclopedia of General Topology - North-Holland, Amsterdam, 2004. (to appear)
[9] Verbitsky O. Structural properties of extremal asymmetric colorings. // Alg. i Discr. Math., 4 (2003), - P.92-117.
[10] Bukatar S.M., Maslyuchenko V.K., Stiran V.S. Partitioning a segment into $N$ similar and homeomorphic parts / / Scientific notes of Kirovograd Pedagogical University. - Kirovograd: KDPU, 2002. - Issue 43. - P. 12 - 15.
[11] Maslyuchenko V.K., Fisyuk V.V. On the question of partitioning a segment into similar parts // Int. scientific conference "Sixth Bogolyubov Readings". Abstracts of reports. - Kyiv, 2003. - P. 141.
- ACS Style
- Ravsky, O.V. Partitioning subsets of $\mathbb{R}^n$ into parts of the same type. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Ravsky OV. Partitioning subsets of $\mathbb{R}^n$ into parts of the same type. Bukovinian Mathematical Journal. 2018; 1(269).
- Chicago/Turabian Style
- Oleksandr Vitaliyovych Ravsky. 2018. "Partitioning subsets of $\mathbb{R}^n$ into parts of the same type". Bukovinian Mathematical Journal. 1 no. 269.