The operator calculus for $n$-parametric $(C_0)$-groups of operators in convolution algebra of distributions with compact supports is constructed. An application of such calculus to multiplication operator by an independent variable and to operator of differentiation is considered.
[1] Mikusinsky J. Operational calculus. - New York: Pergamon Press, 1959.
[2] Yosida K. Operational calculus. A theory of Hyperfunctions. - New York: Springer-Verlag, 1984.
[3] Sharyn S.V., Lopushansky O.V.Operator calculus for convolution algebra of Schwartz distributions on semiaxis // Works of Lviv Mat. societies Mathematical Studies. - 1997. - 7 , № 1. - P.61-72.
[4] Grotendieck A. Produits tensoriel topologiques et espaces nucleaire // Mem. Amer. Math. Soc. - 1955. - V.16 - № 11. - P.1-140.
[5] Vladimirov V.S. Generalized functions in mathematical physics. - M.: Nauka, 1979. - 318 p.
[6] Goldstein J. Semigroups of linear operators and their applications. - Kyiv: Vishcha shkola. 1989. - 348 p.
[7] Yosida K. Functional analysis. - Moscow: Mir. 1967. - 624 p.
[8] Hill E. Functional analysis of a semigroup. - Moscow: Publishing House of Foreign Literature. - 1951. - 636 p.
- ACS Style
- Solomko, A.V. Operator calculus for one class of generalized functions. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Solomko AV. Operator calculus for one class of generalized functions. Bukovinian Mathematical Journal. 2018; 1(269).
- Chicago/Turabian Style
- Andriy Vasyliovych Solomko. 2018. "Operator calculus for one class of generalized functions". Bukovinian Mathematical Journal. 1 no. 269.