We introduce and study an asymptotic norm of an operator as the infimum of the norms of its restrictions to all finite codimensional subspaces. The main result asserts that the asymptotic norm of an operator equals to the distance of the operator from the set of all compact (equivalently, finitedimensional) operators with wider range spaces. On the other hand, we prove that the asymptotic norm is "close" to the measure of non-compactness.
[1] Abramovich Yu. A., Aliprantis C. D. An Invitation to Operator Theory. Graduate Studies in Mathematics, v. 50, AMS - Providence, RI. - 2002. - 530 p.
[2] Axler S., Jewell N., Shields A. The essential norm of an operator and its adjoint // Trans. Amer. Math. Soc. - 1980. - 261, N1. - P. 159-167.
[3] Junge M., Kutzarova D., Odell E. On asymptotically symmetric Banach spaces // Preprint. - 2004. - 25 p.
[4] Lindenstrauss J., Tzafriri L. Classical Banach Spaces. I. - - Springer. - Berlin etc. - 1977. - 190 p.
[5] Maurey B., Milman V. D., Tomczak-Jaegermann N. Asymptotic infinite-dimensional theory of Banach spaces // Oper. Theory: Adv. Appl. - 1994. - 77. - P. 149-175.
[6] Milman V. D., Tomczak-Jaegermann N. Asymptotic $l_p$ spaces and bounded distortions // Contemp. Math. (eds. Bor Luh Lin and W. B. Johnson). - 1993. - 144. - P. 173-195.
[7] Odell E., Schlumprecht Th. Trees and branches in Banach spaces // Trans. Amer. Math. Soc. - 2002. - 354, N10. - P. 4085-4108.
- ACS Style
- Maslyuchenko, O.V.; Mykhaylyuk, V.; Popov, M.M. Asymptotic norm and compact operators. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Maslyuchenko OV, Mykhaylyuk V, Popov MM. Asymptotic norm and compact operators. Bukovinian Mathematical Journal. 2018; 1(269).
- Chicago/Turabian Style
- Oleksandr Volodymyrovych Maslyuchenko, Volodymyr Mykhaylyuk, Mykhailo Mykhailovych Popov. 2018. "Asymptotic norm and compact operators". Bukovinian Mathematical Journal. 1 no. 269.