It is proved that the sequence of continuum hyperspaces in $\mathbb{I}^n$ with Hausdorff dimension $> α_i$ constructs $\mathcal{F}_σ$ -absorbing sequence in $\exp^c (\mathbb{I}^n)$ for arbitrary sequence $(α_i), 1 < α_1 < α_2 < ... < n$.
[1] K.J.Falkoner The Geometry of Fractal Sets. - Cambridge University Press,1985.
[2] T. Banakh, T. Radul, M. Zarichnyi Absorbing Sets in Infinite-Dimensional Manifolds. - VNTL Publishers, 1996.
[3] J. Baars, H. Gladdines, J. van Mill Absorbing systems in infinite-dimensional manifolds // Topology Appl. - 1993. - Vol. 50. - B2. - P.147-182.
[4] H. Gladdines and J. van Mill Absorbing systems in infinite-dimensional manifolds and applications. - Amsterdam, Vrije Universiteit, 1994.
[5] R. Cauty Suites $\mathcal{F}_σ$-absorbantes en theorie de la dimension // Fundamenta Mathematicae. - 1999. - Vol. 159. - B2. P.115-126.
[6] N. Mazurenko Absorbing sets related to Hausdorff dimension // Visn. Lviv. Univ.
[7] M.M. Zarechny Topology of functors and monads in the category of compact sets. - Kyiv, ISDO, 1993.
[8] J. van Mill . The Infinite-Dimensional Topology of Function Spaces. - Amsterdam: Elsevier, 2001. - Vol.64. - 630 p.
- ACS Style
- Mazurenko , N.I. Topology of hyperspaces of continuums of a given Hausdorff dimension in a finite-dimensional cube. Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Mazurenko NI. Topology of hyperspaces of continuums of a given Hausdorff dimension in a finite-dimensional cube. Bukovinian Mathematical Journal. 2018; 1(228).
- Chicago/Turabian Style
- Natalia Ivanivna Mazurenko . 2018. "Topology of hyperspaces of continuums of a given Hausdorff dimension in a finite-dimensional cube". Bukovinian Mathematical Journal. 1 no. 228.