The main result of our note asserts that if $0 < p < 1$ then each non-zero linear continuous operator from $L_p$ to an arbitrary $F$-space is a sign-embedding when restricting to a suitable $L_p (A)$ -subspace with $A ⊆ [0, 1], λ(A) > 0$.
[1] Kadets V. M., Kalton N. J., Werner D. Unconditionally convergent series of operators and narrow operators on $L_1$ // Preprint. - 2003.
[2] Mykhyayliyk V. V., Popov M. M. Weak embeddings of $L_1$ // Houston J. Math. - 2005 (to appear).
[3] Plichko A. M., Popov M. M. Symmetric functionspaces on atomless probability spaces // Dissertations Math. (Rozpr. Mat.) - 1990. - 306. - P.1-85.
[4] Popov M.M. Elementary proof of the absence of non-zero compact operators defined on the space $L_p, 0 < p < 1$ // Mat. notes. - 1990. - 47, N5. - P. 154-155.
[5] Rolewicz S. Metric Linear Spaces. - 1985. - PWN. - Warszawa. - 458 p.
[6] Rosenthal H. P. Some remarks concerning sign-embeddings // Semin. D'analyse Fonct. Univ. of Paris VII. - 1981/82.
[7] Rosenthal H. P. Sign-embeddings of $L^1$ // Lect. Notes Math. - 1983. - 995. - P.155-165.
[8] Talagrand M. The three space problem for $L^1$ // J. Amer. Math. Soc. - 1990. - 3, N1. - P.9-29.
- ACS Style
- Popov, M.M. Sign-embedding of spaces $L_p$ for $0 < p < 1$1 (1). Bukovinian Mathematical Journal. 2018, 1
- AMA Style
- Popov MM. Sign-embedding of spaces $L_p$ for $0 < p < 1$1 (1). Bukovinian Mathematical Journal. 2018; 1(228).
- Chicago/Turabian Style
- Mykhailo Mykhailovych Popov. 2018. "Sign-embedding of spaces $L_p$ for $0 < p < 1$1 (1)". Bukovinian Mathematical Journal. 1 no. 228.